Pharmaceutical Research

, Volume 23, Issue 10, pp 2333–2349 | Cite as

Analysis of Amorphous and Nanocrystalline Solids from Their X-Ray Diffraction Patterns

  • Simon Bates
  • George Zografi
  • David Engers
  • Kenneth Morris
  • Kieran Crowley
  • Ann Newman
Special Issue



The purpose of this paper is to provide a physical description of the amorphous state for pharmaceutical materials and to investigate the pharmaceutical implications. Techniques to elucidate structural differences in pharmaceutical solids exhibiting characteristic X-ray amorphous powder patterns are also presented.

Materials and Methods

The X-ray amorphous powder diffraction patterns of microcrystalline cellulose, indomethacin, and piroxicam were measured with laboratory XRPD instrumentation. Analysis of the data were carried out using a combination of direct methods, such as pair distribution functions (PDF), and indirect material modeling techniques including Rietveld, total scattering, and amorphous packing.


The observation of X-ray amorphous powder patterns may indicate the presence of amorphous, glassy or disordered nanocrystalline material in the sample. Rietveld modeling of microcrystalline cellulose (Avicel® PH102) indicates that it is predominantly disordered crystalline cellulose Form Iβ with some amorphous contribution. The average crystallite size of the disordered nanocrystalline cellulose was determined to be 10.9 nm. Total scattering modeling of ground samples of α, γ, and δ crystal forms of indomethacin in combination with analysis of the PDFs provided a quantitative picture of the local structure during various stages of grinding. For all three polymorphs, with increased grinding time, a two-phase system, consisting of amorphous and crystalline material, continually transformed to a completely random close packed (RCP) amorphous structure. The same pattern of transformation was detected for the Form I polymorph of piroxicam. However, grinding of Form II of piroxicam initially produced a disordered phase that maintained the local packing of Form II but over a very short nanometer length scale. The initial disordered phase is consistent with continuous random network (CRN) glass material. This initial disordered phase was maintained to a critical point when a transition to a completely amorphous RCP structure occurred.


Treating X-ray amorphous powder patterns with different solid-state models, ranging from disordered nanocrystalline to glassy and amorphous, resulted in the assignment of structures in each of the systems examined. The pharmaceutical implications with respect to the stability of the solid are discussed.

Key Words

amorphous CRN disorder disordered nanocrystalline glass pair distribution function (PDF) RCP Rietveld total scattering X-ray powder diffraction (XRPD) 



active pharmaceutical ingredient


continuous random network


nearest neighbor


next nearest neighbor


next next nearest neighbor


long-range order


microcrystalline cellulose


medium-range order


pair distribution function


random close packed


short-range order


X-ray powder diffraction



The authors would like to thank Paul Shields for collecting the XRPD data on microcrystalline cellulose and Igor Ivaniesevic for computational assistance. We would also like to thank Agam Sheth and the late David Grant for the use of the ground piroxicam data. This paper is dedicated to the memory of Professor David J. W. Grant who significantly contributed to our knowledge of solid-state pharmaceutics.


  1. 1.
    B. C. Hancock and G. Zografi. Characteristics and significance of amorphous solids in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    P. G. Debenedetti. Metastable Liquids : Concepts and Principles, Princeton University Press, Princeton, New Jersey, 1996.Google Scholar
  3. 3.
    S. J. L. Billinge and M. F. Thorpe. Local Structure from Diffraction, Plenum, New York, 1998.Google Scholar
  4. 4.
    W. H. Zachariasen. The atomic arrangement in glass. J. Am. Chem. Soc. 54:3841–3851 (1932).CrossRefGoogle Scholar
  5. 5.
    B. Wunderlich. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta 340–341:37–52 (1999).CrossRefGoogle Scholar
  6. 6.
    C. B. Murray, D. J. Norris, and M. G. Bawendi. Characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715 (1993).CrossRefGoogle Scholar
  7. 7.
    D. A. Keen and M. T. Dove. Total scattering studies of silica polymorphs: similarities in glass and disordered crystalline local structures. Minerological Magazine 64(3):447–455 (2000).CrossRefGoogle Scholar
  8. 8.
    S. R. Elliott. Physics of Amorphous Materials, 2 ed. Longman, London, 1990.Google Scholar
  9. 9.
    M. P. Fontana, R. Burioni, and D. Cassi. Generalized Landau Peierls instability: a novel perspective on the nature of glasses? Philos. Mag. B 84(13–16):1307–1311 (2004).Google Scholar
  10. 10.
    D. Kivelson, S. A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus. A thermodynamic theory of supercooled liquids. 219:27–38 (1995). H. Tanaka. Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit. 111(7):3163–3174 (1999). H. Tanaka. Two-order-parameter description of liquids. II. Criteria for vitrification and predictions of our model. 111(7):3175–3182 (1999).Google Scholar
  11. 11.
    K. J. Crowley and G. Zografi. Cryogenic grinding of indomethacin polymorphs and solvates : assessment of amorphous phase formation and amorphous phase stability. J. Pharm. Sci. 91:492–507 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    (a) A. R. Sheth, S. Bates, F. X. Muller, and D. J. Grant. Local structure in amorphous phases of piroxicam from powder X-ray diffractometry. Cryst. Growth Des. 5(2):571–578 (2005). (b) A. R. Sheth, S. Bates, F. X. Muller, and D. J. Grant. Polymorphism in Piroxicam. Cryst. Growth Des. 4(6):1091–1098 (2004).Google Scholar
  13. 13.
    P. Debye. Ann. d. Physik. 46:809–823 (1915).Google Scholar
  14. 14.
    T. Proffen. Analysis of occupational and displacive disorder using atomic pair distribution function: a systematic investigation. Z. Kristallogr. 215:1–8 (2000).CrossRefGoogle Scholar
  15. 15.
    T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca. Structural analysis of complex materials using the atomic pair distribution function—a practical guide. Z. Kristallogr. 218:132–143 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Bishop and C. Bruin. The pair correlation function: a probe of molecular order. Am. J. Phys. 52:1106–1108 (1984).CrossRefGoogle Scholar
  17. 17.
    A. Guinier. X-ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies, Dover, New York, 1994.Google Scholar
  18. 18.
    H. P. Klug and L. E. Alexander. X-ray Diffraction Procedures for Polycrystalline and Amorphous Material, Wiley, New York, 1974.Google Scholar
  19. 19.
    B. E. Warren. X-ray Diffraction, Dover, New York, 1990.Google Scholar
  20. 20.
    B. H. Toby and T. Egami. Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials. Acta Crystallogr. A48:336–346 (1992).Google Scholar
  21. 21.
    P. F. Peterson, E. S. Bozin, T. Proffen, and S. J. L. Billinge. Improved measures of quality for the atomic pair distribution function. J. Appl. Crystallogr. 36:53–64 (2003).CrossRefGoogle Scholar
  22. 22.
    V. Petkov, S. J. L. Billinge, S. D. Shastri, and B. Himmel. High-resolution atomic distribution functions of disordered materials by high-energy X-ray diffraction. J. Non-Cryst. Solids 293–295:726–730 (2001).CrossRefGoogle Scholar
  23. 23.
    H. M. Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22:151–152 (1967).CrossRefGoogle Scholar
  24. 24.
    H. M. Rietveld. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2:65–71 (1969).CrossRefGoogle Scholar
  25. 25.
    M. Ferrari and L. Lutterotti. Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J. Appl. Phys. 76(11):7246–7255 (1994).CrossRefGoogle Scholar
  26. 26.
    S. Matthies, L. Lutterotti, and H.-R. Wenk. Advances in texture analysis from diffraction spectra. J. Appl. Crystallogr. 30:31–42 (1997).CrossRefGoogle Scholar
  27. 27.
    L. Lutterotti, S. Matthies, and H.-R. Wenk. MAUD (Material Analysis Using Diffraction): a user friendly {Java} program for {Rietveld} Texture Analysis and more. Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12) 1:1599–1604 (1999).Google Scholar
  28. 28.
    R. C. Reynolds, Jr. Diffraction by small and disordered crystals. Chapter 6, In D. L. Bish and J. E. Post (eds.), Modern Powder Diffraction, Mineralogical Society of America, Washington, District of Columbia, 1989.Google Scholar
  29. 29.
    J. M. Cowley. Diffraction Physics, North-Holland, Amsterdam, 1995.Google Scholar
  30. 30.
    S. Bates and I. Ivanisevic, manuscript in preparation.Google Scholar
  31. 31.
    S. R. Williams and A. P. Philipse. Random packing of spheres and spherocylinders simulated by mechanical contraction. Phys. Rev. E 67:051301 (2003).CrossRefGoogle Scholar
  32. 32.
    W. Man et al. Experiments on Random Packing of ellipsoids. Phys. Rev. Lett. 94:198001 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Donev, J. Burton, F. H. Stillinger, and S. Torquato. Tetratic order in phase behavior of hard-rectangle system. Phys. Rev. B 73:054109 (2006).CrossRefGoogle Scholar
  34. 34.
    R. W. James. The optical principles of the diffraction of X-rays. Chapter IX, In The Scattering of X-rays by Gases, Liquids and Amorphous Solids, Ox Bow, Woodbridge, 1962.Google Scholar
  35. 35.
    J. Perlstein. Molecular self-assemblies. 2. A computational method for the prediction of the structure of one dimensional screw, glide, and inversion molecular aggregates and implications for the packing of molecules in monolayers and crystals. J. Am. Chem. Soc. 116:455–470 (1994).CrossRefGoogle Scholar
  36. 36.
    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan. Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–9082 (2002).PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron and neutron fiber diffraction. J. Am. Chem. Soc. 125:14300–14306 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Batzer and Kreibich, Influence of water on thermal transitions in natural polymers and synthetic polyamides. Polym. Bull. 5:585 (1981).CrossRefGoogle Scholar
  39. 39.
    L. Salmen and E. Back. Moisture-dependent thermal softening of paper evaluated by its elastic modulus. Tappi 63:117–120 (1980).Google Scholar
  40. 40.
    J. A. Kaduk and P. Langan. Crystal structures and hydrogen bonding in celluloses Iα, Iβ, and II. Advances in X-Ray Analysis, Vol. 47. [Proceedings of the 52nd Annual Denver Conference on Applications of X-Ray Analysis, Held August 4–8, 2003, University of Denver, Colo.]. (2003).Google Scholar
  41. 41.
    P. Langan, S. Narayanasami, Y. Nishiyama, and H. Chanzy. Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12(6):551–562 (2005).CrossRefGoogle Scholar
  42. 42.
    G. Zografi, M. J. Kontny, A. Y. S. Yang, and G. S. Brenner. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 18:99–116 (1984).CrossRefGoogle Scholar
  43. 43.
    P. J. Cox and P. L. Manson. γ-Indomethacin at 120 K. Acta Crystallogr. E59:o986–o988 (2003).Google Scholar
  44. 44.
    L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–1698 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    K. S. Masuda, S. Tabata, Y, Sakata, T. Hayase, E. Yomemochi, and K. Terada. Comparison of molecular mobility in the glassy state between amorphous indomethacin and slaicin based on spin-lattice relaxation times. Pharm. Res. 22:797–805 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    A. R. Sheth, J. W. Lubach, E. J. Munson, F. X. Muller, and D. J. W. Grant. Machanochroism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J. Amer. Chem. Soc. 127:6641–6651.Google Scholar
  47. 47.
    A. Salecki-Gerhardt and G. Zografi. Assessment of disorder in crystalline solids. Int. J. Pharm. 101:237–247 (1994).CrossRefGoogle Scholar
  48. 48.
    A. P. Simonelli, S. C. Mehta, and W. I. Higuchi. Dissolution rates of high energy sulfathiazole–povidone coprecipitates II : characteristics of form of drug controlling Its dissolution rate via solubility studies. J. Pharm. Sci. 65:355–361 (1976).PubMedGoogle Scholar
  49. 49.
    K. Crowley and G. Zografi. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) dispersions on indomethacin crystallization from the amorphous state. Pharm. Res. 20:1417–1422 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    V. Andronis and G. Zografi. Crystal nucleation and growth of indomethacin from the amorphous state. J. Non-Cryst. Solids 271:236–248 (2000).CrossRefGoogle Scholar
  51. 51.
    M. Yoshioka, B. C. Hancock, and G. Zografi. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 83:1700–1704 (1994).PubMedGoogle Scholar
  52. 52.
    M. Otsuka and N. Kaneniwa. A kinetic study of the crystallization process of noncrystalline indomethacin under isothermal conditions. Chem. Pharm. Bull. 36:4026–4032 (1988).PubMedGoogle Scholar
  53. 53.
    A. Ha, I. Cohen, X. Zhao, M. Lee, and D. Kivelson. Supercooled liquids and polyamorphism. J.Phys. Chem. 100:1–4 (1996).CrossRefGoogle Scholar
  54. 54.
    P. F. McMillan. Polymorphic transformations in liquids and glasses. J. Mater. Chem. 14:1506–1512 (2004).CrossRefGoogle Scholar
  55. 55.
    E. Y. Shalaev and G. Zografi. The concept of structure in amorphous states from the perspective of the pharmaceutical sciences. In H. Levine (ed.), Progress in Amorphous Food and Pharmaceutical Systems, The Royal Chemistry Society, London, 2002, pp.11–30.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Simon Bates
    • 1
  • George Zografi
    • 2
  • David Engers
    • 3
  • Kenneth Morris
    • 3
  • Kieran Crowley
    • 4
  • Ann Newman
    • 1
  1. 1.SSCI, IncWest LafayetteUSA
  2. 2.University of WisconsinMadisonUSA
  3. 3.Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  4. 4.Cardinal HealthSomersetUSA

Personalised recommendations