Advertisement

Pharmaceutical Research

, Volume 23, Issue 12, pp 2691–2708 | Cite as

Antiplatelet Drug Resistance and Drug-Drug Interactions: Role of Cytochrome P450 3A4

  • Wei C. Lau
  • Paul A. Gurbel
Expert Review

Abstract

Antiplatelet therapy provided pivotal advances in the treatment of cardiovascular disease. Aspirin and thienopyridine, clopidogrel, is currently the treatment of choice in acute coronary syndromes and the prevention of thrombosis after coronary stent implantation. Despite the efficacy of this dual antiplatelet therapy in reduction of adverse coronary events in patients with acute coronary syndromes, complications persist in a subgroup of these patients. Emerging causes of aspirin and clopidogrel resistance may translate to increase risk for recurrent myocardial infarction, stroke, or cardiac related mortality. However, the mechanism of antiplatelet drug resistance remains incompletely characterized, and a sensitive and specific assay of aspirin and clopidogrel effect that reliably predicts treatment failure has not emerged. To date, evidence supporting antiplatelet drug resistance are pharmacokinetic response variability, drug-drug interaction through competitive inhibition a specific enzymatic pathway, genetic variability, and variability in the induction of enzymatic pathway in metabolic activation of prodrugs, like clopidogrel. Further investigation or guidelines are needed to optimize antiplatelet treatment strategies to identify and treat patients resistant to aspirin and/or clopidogrel.

Key words

antiplatelet resistant antiplatelet therapy aspirin clopidogrel platelet 

References

  1. 1.
    P. A. Gurbel, K. P., Bliden, K. M. Hayes, et al. Platelet activation in myocardial ischemic syndromes. Expert Rev. Cardiovasc. Ther. 2:535–545 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    A. P. Selwyn. Prothrombotic and antithrombotic pathways in acute coronary syndromes. Am. J. Cardiol. 91:3H–11H (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    K. H. Mak, G. Belli, S. G. Ellis, et al. Subacute stent thrombosis: evolving issues and current concepts. J. Am. Coll. Cardiol. 27:494–503 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Budaj, S. Yusuf, S. R. Mehta, et al. Benefit of clopidogrel in patients with acute coronary syndromes without ST-segment elevation in various risk groups. Circulation 106:1622–1626 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Yusuf, F. Zhao, S. R. Mehta, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345:494–502 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    D. L. Bhatt, M. E. Bertrand, P. B. Berger, et al. Meta-analysis of randomized and registry comparisons of ticlopidine with clopidogrel after stenting. J. Am. Coll. Cardiol. 39:9–14 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    Antiplatelet Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324:71–86 (2002).CrossRefGoogle Scholar
  8. 8.
    B. Rocca, and C. Patrono. Determinants of the interindividual variability in response to antiplatelet drugs. J. Thromb. Haemost. 3:1597–1602 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    S. R. Steinhubl, R. Charnigo, and D. J. Moliterno. Resistance to antiplatelet resistance is it justified? J. Am. Coll. Cardiol. 45:1757–1758 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    C. P. Martin, and R. L. Talbert. Aspirin resistance: an evaluation of current evidence and measurement methods. Pharmacotherapy 25:942–953 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    T. A. Nguyen, J. G. Diodati, and C. Pharand. Resistance to clopidogrel: a review of the evidence. J. Am. Coll. Cardiol. 45:1157–1164 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Stein, V. Fuster, D. H. Israel, et al. Platelet inhibitor agents in cardiovascular disease: an update. J. Am. Coll. Cardiol. 14:813–836 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    A. I. Schafer. Antiplatelet therapy. Am. J. Med. 101:199–209 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Nakamura, J. Kambayashi, M. Okuma, et al. Activation of the GP IIb–IIIa complex induced by platelet adhesion to collagen is mediated by both alpha2beta1 integrin and GP VI. J. Biol. Chem. 274:11897–11903 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Schafer, N. M. Ali, and G. N. Levine. Hemostasis, thrombosis, fibrinolysis, and cardiovascular disease. In E. Braunwald, D. P. Zipes, and P. Libby. (eds.), 6th ed., Saunders, Philadelphia, 2001, pp. 2099–2132.Google Scholar
  16. 16.
    R. J., Shebuski, and K. S. Kilgore. Role of inflammatory mediators in thrombogenesis. J. Pharmacol. Exp. Ther. 300:729–735 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Loppnow, R. Bil, S. Hirt, et al. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 91:134–141 (1998).PubMedGoogle Scholar
  18. 18.
    F. Marti, E. Bertran, M. Llucia, et al. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J. Leukoc. Biol. 72:590–597 (2002).PubMedGoogle Scholar
  19. 19.
    P. Patrignani, P. Filabozzi, and C. Patrono. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. Clin. Invest. 69:1366–1372 (1982).PubMedGoogle Scholar
  20. 20.
    W. M. Samara, K. P. Bliden, U. S. Tantry, et al. The difference between clopidogrel responsiveness and posttreatment platelet reactivity. Thromb. Res. 115:89–94 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    P. A., Gurbel, K. P. Bliden, K. M. Hayes, et al. The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting. J. Am. Coll. Cardiol. 45:1392–1396 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    P. A. Gurbel, W. M. Samara, and K. P. Bliden. Failure of clopidogrel to reduce platelet reactivity and activation following standard dosing in elective stenting: implications for thrombotic events and restenosis. Platelets 15:95–99 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    N. S. Nicholson, S. G. Panzer-Knodle, N. F. Haas, et al. Assessment of platelet function assays. Am. Heart J. 135:S170–S178 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    M. E. McKenzie, P. A. Gurbel, D. J. Levine, et al. Clinical utility of available methods for determining platelet function. Cardiology 92:240–247 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    E. F. Mammen, R. S. Alshameeri, and P. C. Comp. Preliminary data from a field trial of the PFA-100 system. Semin. Thromb. Hemost. 21(Suppl 2):113–121 (1995).PubMedGoogle Scholar
  26. 26.
    E. F. Mammen, P. C. Comp, R. Gosselin, et al. PFA-100 system: a new method for assessment of platelet dysfunction. Semin. Thromb. Hemost. 24:195–202 (1998).PubMedGoogle Scholar
  27. 27.
    K. Kottke-Marchant, J. B. Powers, L. Brooks, et al. The effect of antiplatelet drugs, heparin, and preanalytical variables on platelet function detected by the platelet function analyzer (PFA-100). Clin. Appl. Thromb. Hemost. 5:122–130 (1999).PubMedGoogle Scholar
  28. 28.
    B. S. Coller, D. Lang, and L. E. Scudder. Rapid and simple platelet function assay to assess glycoprotein IIb/IIIa receptor blockade. Circulation 95:860–867 (1997).PubMedGoogle Scholar
  29. 29.
    R. M. Craft, J. J. Chavez, C. C. Snider, et al. Comparison of modified Thrombelastograph and Plateletworks whole blood assays to optical platelet aggregation for monitoring reversal of clopidogrel inhibition in elective surgery patients. J. Lab. Clin. Med. 145:309–315 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    U. S. Tantry, K. P. Bliden, and P. A. Gurbel. Overestimation of platelet aspirin resistance detection by thrombelastograph platelet mapping and validation by conventional aggregometry using arachidonic acid stimulation. J. Am. Coll. Cardiol. 46:1705–1709 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    J. W. Eikelboom, J. Hirsh, J. I. Weitz, et al. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105:1650–1655 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    M. J., McQueen, E. Lonn, H. C. Gerstein, et al. The HOPE (Heart Outcomes Prevention Evaluation) Study and its consequences. Scand J. Clin. Lab. Invest. Suppl. 240:143–156 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Cattaneo. Aspirin and clopidogrel: efficacy, safety, and the issue of drug resistance. Arterioscler. Thromb. Vasc. Biol. 24:1980–1987 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    P. A. Gum, K. Kottke-Marchant, P. A. Welsh, et al. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll. Cardiol. 41:961–965 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    W. H. Chen, P. Y. Lee, W. Ng, et al. Aspirin resistance is associated with a high incidence of myonecrosis after non-urgent percutaneous coronary intervention despite clopidogrel pretreatment. J. Am. Coll. Cardiol. 43:1122–1126 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Grundmann, K. Jaschonek, B. Kleine, et al. Aspirin non-responder status in patients with recurrent cerebral ischemic attacks. J. Neurol. 250:63–66 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    A. D. Michelson, M. Cattaneo, J. W. Eikelboom, et al. Aspirin resistance: position paper of the Working Group on Aspirin Resistance. J. Thromb. Haemost. 3:1309–1311 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    K. H. Grotemeyer, H. W. Scharafinski, and I. W. Husstedt. Two-year follow-up of aspirin responder and aspirin non responder. A pilot-study including 180 post-stroke patients. Thromb. Res. 71:397–403 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    J. C. Wang, D. Aucoin-Barry, D. Manuelian, et al. Incidence of aspirin nonresponsiveness using the Ultegra Rapid Platelet Function Assay—ASA. Am. J. Cardiol. 92:1492–1494 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Andersen, M. Hurlen, H. Arnesen, et al. Aspirin non-responsiveness as measured by PFA-100 in patients with coronary artery disease. Thromb. Res. 108:37–42 (2002).PubMedCrossRefGoogle Scholar
  41. 41.
    K. A. Schwartz, D. E. Schwartz, K. Ghosheh, et al. Compliance as a critical consideration in patients who appear to be resistant to aspirin after healing of myocardial infarction. Am. J. Cardiol. 95:973–975 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Bruno, J. P. McConnell, S. N. Cohen, et al. Serial urinary 11-dehydrothromboxane B2, aspirin dose, and vascular events in blacks after recent cerebral infarction. Stroke 35:727–730 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    F. Cipollone, G. Ciabattoni, P. Patrignani, et al. Oxidant stress and aspirin-insensitive thromboxane biosynthesis in severe unstable angina. Circulation 102:1007–1013 (2000).PubMedGoogle Scholar
  44. 44.
    J. A. Cambria-Kiely, and P. J. Gandhi. Possible mechanisms of aspirin resistance. J. Thromb. Thrombolysis 13:49–56 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    J. A. Cambria-Kiely, and P. J. Gandhi. Aspirin resistance and genetic polymorphisms. J. Thromb. Thrombolysis 14:51–58 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    M. K. Halushka, L. P. Walker, and P. V. Halushka. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin. Pharmacol. Ther. 73:122–130 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    E. Ferrari, M. Benhamou, P. Cerboni, et al. Coronary syndromes following aspirin withdrawal: a special risk for late stent thrombosis. J. Am. Coll. Cardiol. 45:456–459 (2005).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Stillings, I. Havlik, M. Chetty, et al. Comparison of the pharmacokinetic profiles of soluble aspirin and solid paracetamol tablets in fed and fasted volunteers. Curr. Med. Res. Opin. 16:115–124 (2000).PubMedCrossRefGoogle Scholar
  49. 49.
    P. J. Mason, A. K. Jacobs, and J. E. Freedman. Aspirin resistance and atherothrombotic disease. J. Am. Coll. Cardiol. 46:986–993 (2005).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Hurlen, I. Seljeflot, and H. Arnesen. Increased platelet aggregability during exercise in patients with previous myocardial infarction. Lack of inhibition by aspirin. Thromb. Res. 99:487–494 (2000).PubMedCrossRefGoogle Scholar
  51. 51.
    T. Kawasaki, Y. Ozeki, T. Igawa, et al. Increased platelet sensitivity to collagen in individuals resistant to low-dose aspirin. Stroke 31:591–595 (2000).PubMedGoogle Scholar
  52. 52.
    E. H. Awtry, and J. Loscalzo. Aspirin. Circulation 101:1206–1218 (2000).PubMedGoogle Scholar
  53. 53.
    F. Catella-Lawson, M. P. Reilly, S. C. Kapoor, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med. 345:1809–1817 (2001).PubMedCrossRefGoogle Scholar
  54. 54.
    T. Kurth, R. J. Glynn, A. M. Walker, et al. Inhibition of clinical benefits of aspirin on first myocardial infarction by nonsteroidal antiinflammatory drugs. Circulation 108:1191–1195 (2003).PubMedCrossRefGoogle Scholar
  55. 55.
    T. M. MacDonald, and L. Wei. Effect of ibuprofen on cardioprotective effect of aspirin. Lancet 361:573–574 (2003).PubMedCrossRefGoogle Scholar
  56. 56.
    S. E. Kimmel, J. A. Berlin, M. Reilly, et al. The effects of nonselective non-aspirin non-steroidal anti-inflammatory medications on the risk of nonfatal myocardial infarction and their interaction with aspirin. J. Am. Coll. Cardiol. 43:985–990 (2004).PubMedCrossRefGoogle Scholar
  57. 57.
    D. Mukherjee, S. E. Nissen, and E. J. Topol. Risk of cardiovascular events associated with selective COX-2 inhibitors. Jama 286:954–959 (2001).PubMedCrossRefGoogle Scholar
  58. 58.
    D. Mukherjee, S. E. Nissen, and E. J. Topol. Cox-2 inhibitors and cardiovascular risk: we defend our data and suggest caution. Clevel. Clin. J. Med. 68:963–964 (2001).CrossRefGoogle Scholar
  59. 59.
    P. J. Newman, R. S. Derbes, and R. H. Aster. The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J. Clin. Invest. 83:1778–1781 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    A. D. Michelson, M. I. Furman, P. Goldschmidt-Clermont, et al. Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation 101:1013–1018 (2000).PubMedGoogle Scholar
  61. 61.
    A. H. Goodall, N. Curzen, M. Panesar, et al. Increased binding of fibrinogen to glycoprotein IIIa-proline33 (HPA-1b, PlA2, Zwb) positive platelets in patients with cardiovascular disease. Eur. Heart J. 20:742–747 (1999).PubMedCrossRefGoogle Scholar
  62. 62.
    D. Burr, H. Doss, G. E. Cooke, et al. A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Stat. Med. 22:1741–1760 (2003).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Undas, K. Brummel, J. Musial, et al. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation 104:2666–2672 (2001).PubMedGoogle Scholar
  64. 64.
    F. Cipollone, B. Rocca, and C. Patrono. Cyclooxygenase-2 expression and inhibition in atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 24:246–255 (2004).PubMedCrossRefGoogle Scholar
  65. 65.
    J. Maclouf, G. Folco, and C. Patrono. Eicosanoids and iso-eicosanoids: constitutive, inducible and transcellular biosynthesis in vascular disease. Thromb. Haemost. 79:691–705 (1998).PubMedGoogle Scholar
  66. 66.
    W. C. Lau, L. A. Waskell, P. B. Watkins, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug–drug interaction. Circulation 107:32–37 (2003).PubMedCrossRefGoogle Scholar
  67. 67.
    P. Savi, J. M. Pereillo, M. F. Uzabiaga, et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost. 84:891–896 (2000).PubMedGoogle Scholar
  68. 68.
    R. T. Dorsam, and S. P. Kunapuli. Central role of the P2Y12 receptor in platelet activation. J. Clin. Invest. 113:340–345 (2004).PubMedCrossRefGoogle Scholar
  69. 69.
    J. A. Remijn, Y. P. Wu, E. H. Jeninga, et al. Role of ADP receptor P2Y(12) in platelet adhesion and thrombus formation in flowing blood. Arterioscler. Thromb. Vasc. Biol. 22:686–691 (2002).PubMedCrossRefGoogle Scholar
  70. 70.
    C. Leon, M. Alex, A. Klocke, et al. Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103:594–600 (2004).PubMedCrossRefGoogle Scholar
  71. 71.
    M. Gawaz. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 61:498–511 (2004).PubMedCrossRefGoogle Scholar
  72. 72.
    E. F. Plow, and T. Byzova. The biology of glycoprotein IIb–IIIa. Coron. Artery Dis. 10:547–551 (1999).PubMedCrossRefGoogle Scholar
  73. 73.
    M. G. Rolf, C. A. Brearley, and M. P. Mahaut-Smith. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb. Haemost. 85:303–308 (2001).PubMedGoogle Scholar
  74. 74.
    C. Vial, S. J. Pitt, J. Roberts, et al. Lack of evidence for functional ADP-activated human P2X1 receptors supports a role for ATP during hemostasis and thrombosis. Blood 102:3646–3651 (2003).PubMedCrossRefGoogle Scholar
  75. 75.
    C. Oury, M. J. Kuijpers, E. Toth-Zsamboki, et al. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101:3969–3976 (2003).PubMedCrossRefGoogle Scholar
  76. 76.
    P. B. Conley, and S. M. Delaney. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr. Opin. Hematol. 10:333–338 (2003).PubMedCrossRefGoogle Scholar
  77. 77.
    P. A. Gurbel, W. C. Lau, K. P. Bliden, et al. Clopidogrel resistance: implications for coronary stenting. Curr. Pharm. Des. 12:1261–1269 (2006).PubMedCrossRefGoogle Scholar
  78. 78.
    D. Woulfe, H. Jiang, R. Mortensen, et al. Activation of Rap1B by G(i) family members in platelets. J. Biol. Chem. 277:23382–23390 (2002).PubMedCrossRefGoogle Scholar
  79. 79.
    P. Lova, S. Paganini, F. Sinigaglia, et al. A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J. Biol. Chem. 277:12009–12015 (2002).PubMedCrossRefGoogle Scholar
  80. 80.
    J. Geiger, J. Brich, P. Honig-Liedl, et al. Specific impairment of human platelet P2Y(AC) ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arterioscler. Thromb. Vasc. Biol. 19:2007–2011 (1999).PubMedGoogle Scholar
  81. 81.
    P. Barragan, J. L. Bouvier, P. O. Roquebert, et al. Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter. Cardiovasc. Interv. 59:295–302 (2003).PubMedCrossRefGoogle Scholar
  82. 82.
    S. R. Steinhubl, P. B. Berger, J. T. Mann, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288:2411–2420 (2002).PubMedCrossRefGoogle Scholar
  83. 83.
    I. Muller, F. Besta, C. Schulz, et al. Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement. Thromb. Haemost. 89:783–787 (2003).PubMedGoogle Scholar
  84. 84.
    P. A. Gurbel, C. C. Cummings, C. R. Bell, et al. Onset and extent of platelet inhibition by clopidogrel loading in patients undergoing elective coronary stenting: the Plavix Reduction Of New Thrombus Occurrence (PRONTO) trial. Am. Heart J. 145:239–247 (2003).PubMedCrossRefGoogle Scholar
  85. 85.
    D. E. Cutlip, D. S. Baim, K. K. Ho, et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 103:1967–1971 (2001).PubMedGoogle Scholar
  86. 86.
    P. A. Gurbel, K. P. Bliden, B. L. Hiatt, et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107:2908–2913 (2003).PubMedCrossRefGoogle Scholar
  87. 87.
    D. R. Nelson, L. Koymans, T. Kamataki, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42 (1996).PubMedCrossRefGoogle Scholar
  88. 88.
    P. Savi, J. Combalbert, C. Gaich, et al. The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Thromb. Haemost. 72:313–317 (1994).PubMedGoogle Scholar
  89. 89.
    M. Hasegawa, A. Sugidachi, T. Ogawa, et al. Stereoselective inhibition of human platelet aggregation by R-138727, the active metabolite of CS-747 (prasugrel, LY640315), a novel P2Y12 receptor inhibitor. Thromb. Haemost. 94:593–598 (2005).PubMedGoogle Scholar
  90. 90.
    M. Kazui, T. Ishizuka, N. Yamamura, et al. Mechanism of production of pharmacologically active metabolites of CS-747, a new pro-drug ADP-receptor antagonist. Thromb. Haemost. (sup):P1916 (2001).Google Scholar
  91. 91.
    W. C. Lau, L. A. Waskell, D. Carville, et al. The antiplatelet activity of clopidogrel is inhibited by atorvastatin but not by pravastatin. Circulation 102:2086 (2000) (abstract).Google Scholar
  92. 92.
    W. Jacobsen, B. Kuhn, A. Soldner, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab. Dispos. 28:1369–1378 (2000).PubMedGoogle Scholar
  93. 93.
    T. A. Clarke, and L. A. Waskell. The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab. Dispos. 31:53–59 (2003).PubMedCrossRefGoogle Scholar
  94. 94.
    W. C. Lau, L. A. Waskell, P. Watkins, et al. The effect of drugs which are known inducers and inhibitors of human cytochrome P450 3A on the platelet inhibitory activity of clopidogrel. J. Am. Coll. Cardiol. 39:235A (2002).CrossRefGoogle Scholar
  95. 95.
    C. Handschin, and U. A. Meyer. Induction of drug metabolism: the role of nuclear receptors. Pharmacol. Rev. 55:649–673 (2003).PubMedCrossRefGoogle Scholar
  96. 96.
    H. M. Bolt. Rifampicin, a keystone inducer of drug metabolism: from Herbert Remmer's pioneering ideas to modern concepts. Drug Metab. Rev. 36:497–509 (2004).PubMedCrossRefGoogle Scholar
  97. 97.
    J. M. Rae, M. D. Johnson, M. E. Lippman, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther. 299:849–857 (2001).PubMedGoogle Scholar
  98. 98.
    B. Goodwin, E. Hodgson, and C. Liddle. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56:1329–1339 (1999).PubMedGoogle Scholar
  99. 99.
    W. C. Lau, P. A. Gurbel, P. B. Watkins, et al. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation 109:166–171 (2004).PubMedCrossRefGoogle Scholar
  100. 100.
    S. D. Wiviott, and E. M Antman. Clopidogrel resistance: a new chapter in a fast-moving story. Circulation 109:3064–3067 (2004).PubMedCrossRefGoogle Scholar
  101. 101.
    P. A. Gurbel, K. P. Bliden, W. Samara, et al. Clopidogrel effect on platelet reactivity in patients with stent thrombosis: results of the CREST Study. J. Am. Coll. Cardiol. 46:1827–1832 (2005).PubMedCrossRefGoogle Scholar
  102. 102.
    S. Matetzky, B. Shenkman, V. Guetta, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109:3171–3175 (2004).PubMedCrossRefGoogle Scholar
  103. 103.
    P. A. Gurbel, A. I. Malinin, K. P. Callahan, et al. Effect of loading with clopidogrel at the time of coronary stenting on platelet aggregation and glycoprotein IIb/IIIa expression and platelet-leukocyte aggregate formation. Am. J. Cardiol. 90:312–315 (2002).PubMedCrossRefGoogle Scholar
  104. 104.
    J. E. Mobley, S. J. Bresee, D. C. Wortham, et al. Frequency of nonresponse antiplatelet activity of clopidogrel during pretreatment for cardiac catheterization. Am. J. Cardiol. 93:456–458 (2004).PubMedCrossRefGoogle Scholar
  105. 105.
    P. A. Gurbel, and K. P. Bliden. A new method of representing drug-induced platelet inhibition: better description of time course, response variability, non-response, and heightened activity. Platelets 14:481–483 (2003).PubMedCrossRefGoogle Scholar
  106. 106.
    P. Jaremo, T. L. Lindahl, S. G. Fransson, et al. Individual variations of platelet inhibition after loading doses of clopidogrel. J. Intern. Med. 252:233–238 (2002).PubMedCrossRefGoogle Scholar
  107. 107.
    P. A. Gurbel, and K. P. Bliden. Durability of platelet inhibition by clopidogrel. Am. J. Cardiol. 91:1123–1125 (2003).PubMedCrossRefGoogle Scholar
  108. 108.
    Y. Uno, Y. Sakamoto, K. Yoshida, et al. Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter. J. Hum. Genet. 48:594–597 (2003).PubMedCrossRefGoogle Scholar
  109. 109.
    W. C. Lau. St. John's wort enhances the platelet inhibitory effect of clopidogrel in clopidogrel “Resistant” healthy volunteers. J. Am. Coll. Cardiol. 45:382A (2005) (Abstract).Google Scholar
  110. 110.
    I. Muller, M. Seyfarth, S. Rudiger, et al. Effect of a high loading dose of clopidogrel on platelet function in patients undergoing coronary stent placement. Heart 85:92–93 (2001).PubMedCrossRefGoogle Scholar
  111. 111.
    A. Kastrati, J. Mehilli, H. Schuhlen, et al. A clinical trial of abciximab in elective percutaneous coronary intervention after pretreatment with clopidogrel. N. Engl. J. Med. 350:232–238 (2004).PubMedCrossRefGoogle Scholar
  112. 112.
    W. C. Lau, J. M. Rae, P. F. Hollenberg et al. Clopidogrel is an inducer and a potent reversible inhibitor of cytochrome P450 3A4 in vitro. J. Am. Coll. Cardiol. 43:493A (2004).CrossRefGoogle Scholar
  113. 113.
    J. Saw, S. R. Steinhubl, P. B. Berger, et al. Lack of adverse clopidogrel–atorvastatin clinical interaction from secondary analysis of a randomized, placebo-controlled clopidogrel trial. Circulation 108:921–924 (2003).PubMedCrossRefGoogle Scholar
  114. 114.
    V. L. Serebruany, M. G. Midei, A. I. Malinin, et al. Absence of interaction between atorvastatin or other statins and clopidogrel: results from the interaction study. Arch. Intern. Med. 164:2051–2057 (2004).PubMedCrossRefGoogle Scholar
  115. 115.
    H. Wienbergen, A. K. Gitt, R. Schiele, et al. Comparison of clinical benefits of clopidogrel therapy in patients with acute coronary syndromes taking atorvastatin versus other statin therapies. Am. J. Cardiol. 92:285–288 (2003).PubMedCrossRefGoogle Scholar
  116. 116.
    J. Brophy, V. Costa, and M. Babapulle. A pharmaco-epidemiological study of the interaction between atorvastatin and clopidogrel following percutaneous coronary interventions. J. Am. Coll. Cardiol. 43:50A (2004) (Abstract).CrossRefGoogle Scholar
  117. 117.
    M. Blumenthal (ed.), The complete German Commission E monographs-therapeutic guide to herbal medicines. American Botanical Council, 1998.Google Scholar
  118. 118.
    R. E. Watkins, J. M. Maglich, L. B. Moore, et al. 2.1 A crystal structure of human PXR in complex with the St. John's wort compound hyperforin. Biochemistry 42:1430–1438 (2003).PubMedCrossRefGoogle Scholar
  119. 119.
    L. B. Moore, B. Goodwin, S. A. Jones, et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. U. S. A. 97:7500–7502 (2000).PubMedCrossRefGoogle Scholar
  120. 120.
    A. Biber, H. Fischer, A. Romer, et al. Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers. Pharmacopsychiatry 31(Suppl 1):36–43 (1998).PubMedCrossRefGoogle Scholar
  121. 121.
    C. A. Roby, G. D. Anderson, E. Kantor, et al. St John's Wort: effect on CYP3A4 activity. Clin. Pharmacol. Ther. 67:451–457 (2000).PubMedCrossRefGoogle Scholar
  122. 122.
    J. McEwen, G. Strauch, P. Perles, et al. Clopidogrel bioavailability: absence of influence of food or antacids. Semin. Thromb. Hemost. 25(Suppl 2):47–50 (1999).PubMedGoogle Scholar
  123. 123.
    N. von Beckerath, D. Taubert, G. Pogatsa-Murray, et al. Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) trial. Circulation 112:2946–2950 (2005).Google Scholar
  124. 124.
    D. Taubert, A. Kastrati, S. Harlfinger, et al. Pharmacokinetics of clopidogrel after administration of a high loading dose. Thromb. Haemost. 92:311–316 (2004).PubMedGoogle Scholar
  125. 125.
    E. Wang, C. N. Casciano, R. P. Clement, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm. Res. 18:800–806 (2001).PubMedCrossRefGoogle Scholar
  126. 126.
    K. Bogman, A. K. Peyer, M. Torok, et al. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br. J. Pharmacol. 132:1183–1192 (2001).PubMedCrossRefGoogle Scholar
  127. 127.
    T. Sakaeda, K. Takara, M. Kakumoto, et al. Simvastatin and lovastatin, but not pravastatin, interact with MDR1. J. Pharm. Pharmacol. 54:419–423 (2002).PubMedCrossRefGoogle Scholar
  128. 128.
    P. Fontana, A. Dupont, S. Gandrille, et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108:989–995 (2003).PubMedCrossRefGoogle Scholar
  129. 129.
    D. J. Angiolillo, A. Fernandez-Ortiz, E. Bernardo, et al. Lack of association between the P2Y(12) receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease. Thromb. Res. 116:491–497 (2005).PubMedCrossRefGoogle Scholar
  130. 130.
    A. Sugidachi, F. Asai, T. Ogawa, et al. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br. J. Pharmacol. 129:1439–1446 (2000).PubMedCrossRefGoogle Scholar
  131. 131.
    Y. Niitsu, J. A. Jakubowski, A. Sugidachi, et al. Pharmacology of CS-747 (prasugrel, LY640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity. Semin. Thromb. Hemost. 31:184–194 (2005).PubMedCrossRefGoogle Scholar
  132. 132.
    S. D. Wiviott, E. M. Antman, K. J. Winters, et al. Randomized comparison of prasugrel (CS-747, LY640315), a novel thienopyridine P2Y12 antagonist, with clopidogrel in percutaneous coronary intervention: results of the joint utilization of medications to block platelets optimally (JUMBO)-TIMI 26 trial. Circulation 111:3366–3373 (2005).PubMedCrossRefGoogle Scholar
  133. 133.
    F. Storey. The P2Y12 receptor as a therapeutic target in cardiovascular disease. Platelets 12:197–209 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Medical Director Cardiovascular Center Operating Rooms, Cardiovascular AnesthesiologyUniversity of Michigan Health SystemAnn ArborUSA
  2. 2.Sinai Center for Thrombosis ResearchSinai Hospital of BaltimoreBaltimoreUSA
  3. 3.1H247 University HospitalAnn ArborUSA

Personalised recommendations