Skip to main content
Log in

The Absorption of Darbepoetin Alfa Occurs Predominantly via the Lymphatics Following Subcutaneous Administration to Sheep

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the contribution of the lymphatics to the systemic availability of darbepoetin alfa (DA) using an established sheep model.

Materials and Methods

DA was administered either by intravenous (IV) injection (0.2, 0.5 or 2 μg/kg) or by subcutaneous (SC) administration (2 μg/kg) into the interdigital space of the hind leg. A SC control group was used to determine the absolute bioavailability (F sys). Cannulation of the peripheral lymphatics in a parallel SC group allowed the continuous collection of lymph draining the injection site and determination of the cumulative amount of DA absorbed via the lymphatics. Serum and lymph concentrations of DA were determined by ELISA. The fraction of the dose absorbed into the lymphatics (F lymph) relative to the fraction absorbed directly into the blood (F blood) was determined using a compartmental approach.

Results

Dose-linear pharmacokinetics was observed within the dose range investigated. The bioavailability was virtually complete following SC injection into the interdigital space (88.4 ± 15.7%). A high proportion of the administered dose was recovered in peripheral lymph (90.2 ± 4.4%) resulting in a substantial reduction in the systemic availability in lymph cannulated animals (3.7%).

Conclusion

The high recovery of DA in the peripheral lymph demonstrated near complete absorption of this recombinant protein via the lymphatics in a lymph cannulated sheep model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. I. C. Macdougall. Novel erythropoiesis stimulating protein. Semin. Neurol. 20:375–381 (2000).

    Article  CAS  Google Scholar 

  2. J. C. Egrie and J. K. Browne. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol. Dial. Transplant. 16(Suppl 3):3–13 (2001).

    PubMed  Google Scholar 

  3. I. C. Macdougall, S. J. Gray, O. Elston, C. Breen, B. Jenkins, J. Browne, and J. Egrie. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J. Am. Soc. Nephrol. 10:2392–2395 (1999).

    PubMed  CAS  Google Scholar 

  4. K. K. Flaharty, J. Caro, A. Erslev, J. J. Whalen, E. M. Morris, T. D. Bjornsson, and P. H. Vlasses. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin. Pharmacol. Ther. 47:557–564 (1990).

    Article  PubMed  Google Scholar 

  5. P. Veng-Pedersen, J. A. Widness, L. M. Pereira, C. Peters, R. L. Schmidt, and L. S. Lowe. Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis. Application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J. Pharm. Sci. 84:760–767 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. P. Veng-Pedersen, J. A. Widness, L. M. Pereira, R. L. Schmidt, and L. S. Lowe. A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm. Drug Dispos. 20:217–223 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. M. Kato, H. Kamiyama, A. Okazaki, K. Kumaki, Y. Kato, and Y. Sugiyama. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J. Pharmacol. Exp. Ther. 283:520–527 (1997).

    PubMed  CAS  Google Scholar 

  8. M. Allon, K. Kleinman, M. Walczyk, C. Kaupke, L. Messer-Mann, K. Olson, A. C. Heatherington, and B. J. Maroni. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin. Pharmacol. Ther. 72:546–555 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. A. Heatherington, D. Robi, J. Young, and S. Baughman. Pharmacokinetic (PK) Properties of Aranesp™ Scale Allometrically. American Association of Pharmaceutical Scientists National Biotechnology Conference, San Diego, 2002.

    Google Scholar 

  10. G. Jang, R. Marino, B. Cooke, and D. Padhi. Darbepoetin Alfa (Aranesp) Pharmacokinetics is Comparable in Chronic Kidney Disease (CKD) Patients Receiving and not Receiving dialysis, in Pediatric CKD Patients, and in Healthy Adults. The American Society of Nephrology, Philadelphia, 2005.

    Google Scholar 

  11. D. Kampf, A. Kahl, J. Passlick, A. Pustelnik, K. U. Eckardt, B. Ehmer, C. Jacobs, A. Baumelou, B. Grabensee, and G. M. Gahl. Single-dose kinetics of recombinant human erythropoietin after intravenous, subcutaneous and intraperitoneal administration: preliminary results. Contrib. Nephrol. 76:106–111 (1989).

    PubMed  CAS  Google Scholar 

  12. J. D. Jensen, L. W. Jensen, and J. K. Madsen. The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur. J. Clin. Pharmacol. 46:333–337 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. J. C. Egrie, E. Dwyer, J. K. Browne, A. Hitz, and M. A. Lykos. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31:290–299 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167–169 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. S. A. Charman, A. M. Segrave, G. A. Edwards, and C. J. H. Porter. Systemic availability and lymphatic transport of human growth hormone administered by subcutaneous injection. J. Pharm. Sci. 89:168–177 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. C. J. Porter and S. A. Charman. Lymphatic transport of proteins after subcutaneous administration. J. Pharm. Sci. 89:297–310 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. S. A. Charman, D. N. McLennan, G. A. Edwards, and C. J. H. Porter. Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm. Res. 18:1620–1626 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. D. N. McLennan, C. J. H. Porter, G. A. Edwards, S. W. Martin, A. C. Heatherington, and S. A. Charman. Lymphatic absorption is the primary contributor to the systemic availability of epoetin alfa following subcutaneous administration to sheep. J. Pharmacol. Exp. Ther. 313:345–351 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. C. J. H. Porter, G. A. Edwards, and S. A. Charman. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv. Drug Deliv. Rev. 50:157–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. M. Gibaldi and D. Perrier. Pharmacokinetics. Marcel Dekker, New York, 1982.

    Google Scholar 

  21. D. Adams and M. McKinley. The sheep. ANZCCART News 8:1–4 (1995).

    Google Scholar 

  22. D. N. McLennan, C. J. H. Porter, and S. A. Charman. Subcutaneous drug delivery and the role of the lymphatics. Drug. Discov. Today Technol. 2:89–96 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Ms. Majella Snelling is gratefully acknowledged. Financial support for this study was provided by Amgen Inc., Thousand Oaks, California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Charman.

Appendix

Appendix

$$ \frac{{{\text{d}}C_{{\text{s}}} {\text{(IV)}}}} {{{\text{d}}t}} = k_{{{\text{21}}}} \cdot \frac{{A_{{\text{e}}} }} {{V_{{\text{c}}} }} - {\left( {k_{{{\text{12}}}} + k_{{{\text{10}}}} } \right)} \cdot C_{{\text{s}}} $$
(1)
$$ \frac{{{\text{d}}C_{{\text{s}}} {\text{(SC)}}}} {{{\text{d}}t}} = {\left( {k_{{{\text{blood}}}} + k_{{{\text{lymph}}}} } \right)} \cdot \frac{{A_{{{\text{sc}}}} }} {{V_{{\text{c}}} }} + k_{{{\text{21}}}} \cdot \frac{{A_{{\text{e}}} }} {{V_{{\text{c}}} }} - {\left( {k_{{{\text{12}}}} + k_{{{\text{10}}}} } \right)} \cdot C_{{\text{s}}} $$
(2)
$$ \frac{{{\text{d}}C_{{\text{s}}} {\text{(SC\_lymph)}}}} {{{\text{d}}t}} = k_{{{\text{blood}}}} \cdot \frac{{A_{{{\text{sc}}}} }} {{V_{{\text{c}}} }} + k_{{{\text{21}}}} \cdot \frac{{A_{{\text{e}}} }} {{V_{{\text{c}}} }} - {\left( {k_{{{\text{12}}}} + k_{{{\text{10}}}} } \right)} \cdot C_{{\text{s}}} $$
(3)
$$ \frac{{{\text{d}}A_{{\text{e}}} }} {{{\text{d}}t}} = k_{{{\text{12}}}} \cdot C_{{\text{s}}} \cdot V_{{\text{c}}} - k_{{{\text{21}}}} \cdot A_{{\text{e}}} $$
(4)
$$ \frac{{{\text{dA}}_{{{\text{sc}}}} }} {{{\text{dt}}}} = - {\left( {{\text{k}}_{{{\text{blood}}}} + {\text{k}}_{{{\text{lymph}}}} + {\text{k}}_{{{\text{loss}}}} } \right)} \cdot {\text{A}}_{{{\text{sc}}}} \quad {\text{where: A}}_{{{\text{sc}}}} {\left( 0 \right)} = {\text{Dose}} $$
(5)
$$ \frac{{{\text{dA}}_{{{\text{pl}}}} }} {{{\text{dt}}}} = {\text{k}}_{{{\text{lymph}}}} \cdot {\text{A}}_{{{\text{sc}}}} \quad {\text{where: A}}_{{{\text{sc}}}} {\left( 0 \right)} = {\text{Dose}} $$
(6)

C s

Serum concentration

A sc

The amount at the SC injection site

A pl

The amount in peripheral lymph

A e

The amount in the extravascular compartment

Secondary parameters estimated:

$$ {\text{CL}} = k_{{{\text{10}}}} \cdot V_{{\text{c}}} $$
(7)
$$ F_{{{\text{abs}}}} = \frac{{k_{{{\text{blood}}}} {\text{ }} + {\text{ }}k_{{{\text{lymph}}}} }} {{k_{{{\text{blood}}}} {\text{ }} + {\text{ }}k_{{{\text{lymph}}}} {\text{ }} + {\text{ }}k_{{{\text{loss}}}} }} $$
(8)
$$ F_{{{\text{lymph}}}} = \frac{{k_{{{\text{lymph}}}} }} {{k_{{{\text{blood}}}} {\text{ }} + {\text{ }}k_{{{\text{lymph}}}} }} $$
(9)
$$ F_{{{\text{blood}}}} = \frac{{k_{{{\text{blood}}}} }} {{k_{{{\text{blood}}}} {\text{ }} + {\text{ }}k_{{{\text{lymph}}}} }} $$
(10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLennan, D.N., Porter, C.J.H., Edwards, G.A. et al. The Absorption of Darbepoetin Alfa Occurs Predominantly via the Lymphatics Following Subcutaneous Administration to Sheep. Pharm Res 23, 2060–2066 (2006). https://doi.org/10.1007/s11095-006-9064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9064-8

Key words

Navigation