Advertisement

Pharmaceutical Research

, Volume 23, Issue 9, pp 2060–2066 | Cite as

The Absorption of Darbepoetin Alfa Occurs Predominantly via the Lymphatics Following Subcutaneous Administration to Sheep

  • Danielle N. McLennan
  • Christopher J. H. Porter
  • Glenn A. Edwards
  • Anne C. Heatherington
  • Steven W. Martin
  • Susan A. Charman
Research Paper

Abstract

Purpose

To determine the contribution of the lymphatics to the systemic availability of darbepoetin alfa (DA) using an established sheep model.

Materials and Methods

DA was administered either by intravenous (IV) injection (0.2, 0.5 or 2 μg/kg) or by subcutaneous (SC) administration (2 μg/kg) into the interdigital space of the hind leg. A SC control group was used to determine the absolute bioavailability (F sys). Cannulation of the peripheral lymphatics in a parallel SC group allowed the continuous collection of lymph draining the injection site and determination of the cumulative amount of DA absorbed via the lymphatics. Serum and lymph concentrations of DA were determined by ELISA. The fraction of the dose absorbed into the lymphatics (F lymph) relative to the fraction absorbed directly into the blood (F blood) was determined using a compartmental approach.

Results

Dose-linear pharmacokinetics was observed within the dose range investigated. The bioavailability was virtually complete following SC injection into the interdigital space (88.4 ± 15.7%). A high proportion of the administered dose was recovered in peripheral lymph (90.2 ± 4.4%) resulting in a substantial reduction in the systemic availability in lymph cannulated animals (3.7%).

Conclusion

The high recovery of DA in the peripheral lymph demonstrated near complete absorption of this recombinant protein via the lymphatics in a lymph cannulated sheep model.

Key words

darbepoetin alfa lymph protein delivery protein pharmacokinetics subcutaneous injection 

Notes

Acknowledgments

The technical assistance of Ms. Majella Snelling is gratefully acknowledged. Financial support for this study was provided by Amgen Inc., Thousand Oaks, California.

References

  1. 1.
    I. C. Macdougall. Novel erythropoiesis stimulating protein. Semin. Neurol. 20:375–381 (2000).CrossRefGoogle Scholar
  2. 2.
    J. C. Egrie and J. K. Browne. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol. Dial. Transplant. 16(Suppl 3):3–13 (2001).PubMedGoogle Scholar
  3. 3.
    I. C. Macdougall, S. J. Gray, O. Elston, C. Breen, B. Jenkins, J. Browne, and J. Egrie. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J. Am. Soc. Nephrol. 10:2392–2395 (1999).PubMedGoogle Scholar
  4. 4.
    K. K. Flaharty, J. Caro, A. Erslev, J. J. Whalen, E. M. Morris, T. D. Bjornsson, and P. H. Vlasses. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin. Pharmacol. Ther. 47:557–564 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Veng-Pedersen, J. A. Widness, L. M. Pereira, C. Peters, R. L. Schmidt, and L. S. Lowe. Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis. Application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J. Pharm. Sci. 84:760–767 (1995).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Veng-Pedersen, J. A. Widness, L. M. Pereira, R. L. Schmidt, and L. S. Lowe. A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm. Drug Dispos. 20:217–223 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Kato, H. Kamiyama, A. Okazaki, K. Kumaki, Y. Kato, and Y. Sugiyama. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J. Pharmacol. Exp. Ther. 283:520–527 (1997).PubMedGoogle Scholar
  8. 8.
    M. Allon, K. Kleinman, M. Walczyk, C. Kaupke, L. Messer-Mann, K. Olson, A. C. Heatherington, and B. J. Maroni. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin. Pharmacol. Ther. 72:546–555 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Heatherington, D. Robi, J. Young, and S. Baughman. Pharmacokinetic (PK) Properties of Aranesp™ Scale Allometrically. American Association of Pharmaceutical Scientists National Biotechnology Conference, San Diego, 2002.Google Scholar
  10. 10.
    G. Jang, R. Marino, B. Cooke, and D. Padhi. Darbepoetin Alfa (Aranesp) Pharmacokinetics is Comparable in Chronic Kidney Disease (CKD) Patients Receiving and not Receiving dialysis, in Pediatric CKD Patients, and in Healthy Adults. The American Society of Nephrology, Philadelphia, 2005.Google Scholar
  11. 11.
    D. Kampf, A. Kahl, J. Passlick, A. Pustelnik, K. U. Eckardt, B. Ehmer, C. Jacobs, A. Baumelou, B. Grabensee, and G. M. Gahl. Single-dose kinetics of recombinant human erythropoietin after intravenous, subcutaneous and intraperitoneal administration: preliminary results. Contrib. Nephrol. 76:106–111 (1989).PubMedGoogle Scholar
  12. 12.
    J. D. Jensen, L. W. Jensen, and J. K. Madsen. The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur. J. Clin. Pharmacol. 46:333–337 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    J. C. Egrie, E. Dwyer, J. K. Browne, A. Hitz, and M. A. Lykos. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31:290–299 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Supersaxo, W. R. Hein, and H. Steffen. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm. Res. 7:167–169 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    S. A. Charman, A. M. Segrave, G. A. Edwards, and C. J. H. Porter. Systemic availability and lymphatic transport of human growth hormone administered by subcutaneous injection. J. Pharm. Sci. 89:168–177 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    C. J. Porter and S. A. Charman. Lymphatic transport of proteins after subcutaneous administration. J. Pharm. Sci. 89:297–310 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    S. A. Charman, D. N. McLennan, G. A. Edwards, and C. J. H. Porter. Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm. Res. 18:1620–1626 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    D. N. McLennan, C. J. H. Porter, G. A. Edwards, S. W. Martin, A. C. Heatherington, and S. A. Charman. Lymphatic absorption is the primary contributor to the systemic availability of epoetin alfa following subcutaneous administration to sheep. J. Pharmacol. Exp. Ther. 313:345–351 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    C. J. H. Porter, G. A. Edwards, and S. A. Charman. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv. Drug Deliv. Rev. 50:157–171 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Gibaldi and D. Perrier. Pharmacokinetics. Marcel Dekker, New York, 1982.Google Scholar
  21. 21.
    D. Adams and M. McKinley. The sheep. ANZCCART News 8:1–4 (1995).Google Scholar
  22. 22.
    D. N. McLennan, C. J. H. Porter, and S. A. Charman. Subcutaneous drug delivery and the role of the lymphatics. Drug. Discov. Today Technol. 2:89–96 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Danielle N. McLennan
    • 1
  • Christopher J. H. Porter
    • 2
  • Glenn A. Edwards
    • 3
  • Anne C. Heatherington
    • 4
  • Steven W. Martin
    • 4
  • Susan A. Charman
    • 1
  1. 1.Centre for Drug Candidate Optimisation, Victorian College of PharmacyMonash UniversityParkvilleAustralia
  2. 2.Department of Pharmaceutics, Victorian College of PharmacyMonash UniversityParkvilleAustralia
  3. 3.Department of Veterinary SciencesThe University of MelbourneWerribeeAustralia
  4. 4.Department of Pharmacokinetics and Drug MetabolismAmgen Inc.Thousand OaksUSA

Personalised recommendations