Pharmaceutical Research

, Volume 23, Issue 8, pp 1809–1816 | Cite as

Enteric Coated Magnetic HPMC Capsules Evaluated in Human Gastrointestinal Tract by AC Biosusceptometry

  • Luciana A. Corá
  • Fernando G. Romeiro
  • Fabiano C. Paixão
  • Madileine F. Américo
  • Ricardo B. Oliveira
  • Oswaldo Baffa
  • José Ricardo A. Miranda
Research Paper



To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process.

Materials and Methods

HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit® were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t 50) was quantified from 50% increase of pixels in the imaging area.


In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t50) calculated for in vitro was 25±5 min and for in vivo was 13±5 min. In vivo also were determined mean values for GRT (55±19 min), SITT (185±82 min) and OCTT (240±88 min).


AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.

Key words

biosusceptometry colonic drug delivery gastrointestinal motility HPMC capsules magnetic images 



The authors would like to thank the Brazilian agencies: FAPESP/PRONEX (03/10107-5) and CAPES for financial support. Eudragit® samples used in this study were supplied from Almapal S/A—Tecnologia Validada, Brazil. HPMC capsules (V-Caps®) were a gift from Capsugel—Divison of Pfizer, Brazil.


  1. 1.
    L. Yang, J. S. Chu, and J. A. Fix. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int. J. Pharm. 235:1–15 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    M. A. Shareef, R. K. Khar, A. Ahuja, F. J. Ahmad, and S. Raghava. Colonic drug delivery: an updated review. AAPS Pharm. Sci. 5:1–26 (2003).CrossRefGoogle Scholar
  3. 3.
    E. T. Cole, R. A. Scott, A. L. Connor, I. R. Wilding, H-U. Petereit, C. Schminke, T. Beckert, and D. Cadé. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 231:83–95 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    O. Honkanen, J. Marvola, H. Kanerva, K. Lindevall, M. Lipponen, T. Kekki, A. Ahonen, and M. Marvola. Gamma scintigraphic evaluation of the fate of hydroxypropyl methylcellulose capsules in the human gastrointestinal tract. Eur. J. Pharm. Sci. 21:671–678 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    C. S. Leopold. Coated dosage forms for colon-specific drug delivery. Pharm. Sci. Technol. Today. 2:197–252 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    C. D. Melia and S. S. Davis. Review article: mechanisms of drug release from tablets and capsules. I: disintegration. Aliment. Pharmacol. Ther. 3:223–232 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Lipka and G. L. Amidon. Setting bioequivalence requirements for drug development based on preclinical data: optimizing oral drug delivery systems. J. Control. Release. 62:41–49 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Zahirul and I. Khan. Dissolution testing for sustained or controlled release oral dosage forms and correlation with in vivo data: challenges and opportunities. Int. J. Pharm. 140:131–143 (1996).CrossRefGoogle Scholar
  9. 9.
    N. Rouge, P. Buri, and E. Doelker. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 136:117–139 (1996).CrossRefGoogle Scholar
  10. 10.
    M. Singh and V. Waluch. Physics and instrumentation for imaging in-vivo drug distribution. Adv. Drug Deliv. Rev. 4:7–20 (2000).CrossRefGoogle Scholar
  11. 11.
    I. R. Wilding, A. J. Coupe, and S. S. Davis. The role of γ-scintigraphy in oral drug delivery. Adv. Drug Deliv. Rev. 46:103–124 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    J. C. Richardson, R. W. Bowtell, K. Mäder, and C. D. Melia. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv. Drug Deliv. Rev. 57:1191–1209 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Steingoetter, D. Weishaup, P. Kunz, K. Mäder, H. Lengsfeld, M. Thumshirn, P. Boesiger, M. Fried, and W. Schwizer. Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets. Pharm. Res. 20:2001–2007 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Steingoetter, P. Kunz, D. Weishaupt, K. Mäder, H. Lengsfeld, M. Thumshirn, P. Boesiger, M. Fried, and W. Schwizer. Analysis of the meal-dependent intragastric performance of a gastric-retentive tablet assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 18:713–720 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    W. Weitschies, O. Kosch, H. Mönnikes, and L. Trahms. Magnetic Marker Monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv. Drug Deliv. Rev. 57:1210–1222 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    J. R. A. Miranda, O. Baffa, and R. B. Oliveira. An AC biosusceptometer to study gastric emptying. Med. Phys. 19:445–448 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    L. A. Corá, M. F. Américo, R. B. Oliveira, O. Baffa, R. Moraes, F. G. Romeiro, and J. R. A. Miranda. Disintegration of magnetic tablets in human stomach evaluated by alternate current biosusceptometry. Eur. J. Pharm. Biopharm. 56:413–420 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    L. A. Corá, F. G. Romeiro, M. Stelzer, M. F. Américo, R. B. Oliveira, O. Baffa, and J. R. A. Miranda. AC biosusceptometry in the study of drug delivery. Adv. Drug Deliv. Rev. 57:1223–1241 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    O. Baffa, R. B. Oliveira, J. R. A. Miranda, and L. E. A. Troncon. Analysis and development of AC biosusceptometer for orocaecal transit time measurements. Med. Biol. Eng. Comput. 33:353–357 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    R. B. Oliveira, O. Baffa, L. E. A. Troncon, J. R. A. Miranda, and C. R. Cambrea. Evaluation of a biomagnetic technique for measurement of orocaecal transit time. Eur. J. Gastroenterol. Hepatol. 8:491–495 (1996).PubMedGoogle Scholar
  21. 21.
    J. R. A. Miranda, R. B. Oliveira, P. L. Sousa, F. J. H. Braga, and O. Baffa. A novel biomagnetic method to study gastric antral contractions. Phys. Med. Biol. 42:1791–1799 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Moraes, L. A. Corá, M. F. Américo, R. B. Oliveira, O. Baffa, and J. R. A. Miranda. Measurement of gastric contraction activity in dogs by means of AC biosusceptometry. Physiol. Meas. 24:337–345 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Moreira, L. Murta, and O. Baffa. Imaging ferromagnetic tracers with an AC biosusceptometer. Rev. Sci.Instrum. 71:2532–2538 (2000).CrossRefGoogle Scholar
  24. 24.
    L. A. Corá, U. Andreis, F. G. Romeiro, M. F. Américo, R. B. Oliveira, O. Baffa, and J. R. A. Miranda. Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry. Phys. Med. Biol. 50:5523–5534 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    L. A. Corá, F. G. Romeiro, M. F. Américo, R. B. Oliveira, O. Baffa, M. Stelzer, and J. R. A. Miranda. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by ac biosusceptometry. Eur. J. Pharm. Sci. 27:1–8 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    E. H. Frei, E. Gunders, M. Pajewsky, W. J. Alkan, and J. Eshcher. Ferrites as contrast material for medical X-ray diagnosis. J. Appl. Phys. 39:99–1001 (1968).CrossRefGoogle Scholar
  27. 27.
    V. G. Belikov and A. G. Kuregyan. Generation and medicobiological application of magnetic fields and carriers (review). Pharm. Chem. J. 35:88–95 (2001).CrossRefGoogle Scholar
  28. 28.
    A. David, B. Yagen, A. Sintov, and A. Rubinstein. Acrylic polymers for colon-specific drug delivery. STP Pharma Sci. 7:546–554 (1997).Google Scholar
  29. 29.
    K. Lehman. Practical Course in Film Coating of Pharmaceutical Dosage Forms with Eudragit®, Pharma Polymers, Darmstadt, 2001.Google Scholar
  30. 30.
    D. F. Evans, G. Pye, R. Bramley, A. G. Clark, T. J. Dyson, and J. D. Hardcastle. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–1041 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    M. K. Chourasia and S. K. Jain. Pharmaceutical approaches to colon target drug delivery systems. J. Pharm. Pharmaceut. Sci. 6:33–66 (2003).Google Scholar
  32. 32.
    E. M. M. Quigley. Gastric and small motility in health and disease. Gastroenterol. Clin. North Am. 25:113–145 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    A. J. Coupe, S. S. Davis, and I. R. Wilding. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm. Res. 8:360–364 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    F. Kedzierewicz, P. Thouvenot, J. Lemut, A. Etienne, M. Hoffman, and P. Maincent. Evaluation of peroral silicone dosage forms in humans by gamma-scintigraphy. J. Control. Release. 58:195–205 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    S. S. Davis, J. G. Hardy, and J. W. Fara. Transit of pharmaceutical dosage forms through the small intestine. Gut. 27:886–892 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Harris, J. T. Fell, H. L. Sharma, and D. C. Taylor. GI transit of potential bioadhesive formulations in man: a scintigraphy study. J. Control. Release. 12:45–53 (1990).CrossRefGoogle Scholar
  37. 37.
    C. J. Kenyon, R. V. Nardi, D. Wong, G. Hooper, I. R. Wilding, and D. R. Friend. Colonic delivery of dexamethasone: a pharmacoscintigraphic evaluation. Aliment. Pharmacol. Ther. 11:205–213 (1997).PubMedCrossRefGoogle Scholar
  38. 38.
    C. Tuleu, A. W. Basit, W. A. Waddington, P. J. Ell, and J. M. Newton. Colonic delivery of 4-aminosalicylic acid using amylase-ethylcellulose-coated hydroxypropylmethylcellulose capsules. Aliment. Pharmacol.Ther. 16:1771–1779 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    K.-H. Lin, S.-Y. Lin, and M.-J. Li. Compression forces and amount of outer coating layer affecting the time-controlled disintegration of the compression-coated tablets prepared by direct compression with micronized ethylcellulose. J. Pharm. Sci. 90:2005–2009 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Zhou. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J. Clin. Pharmacol. 43:211–227 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science Business Media, Inc. 2006

Authors and Affiliations

  • Luciana A. Corá
    • 1
  • Fernando G. Romeiro
    • 2
  • Fabiano C. Paixão
    • 1
  • Madileine F. Américo
    • 3
  • Ricardo B. Oliveira
    • 3
  • Oswaldo Baffa
    • 4
  • José Ricardo A. Miranda
    • 1
    • 5
  1. 1.Departamento de Física e Biofísica, IBBUniversidade Estadual Paulista—UNESPBotucatuBrazil
  2. 2.Departamento de Clínica Médica, FMUniversidade Estadual Paulista—UNESPBotucatuBrazil
  3. 3.Departamento de Clínica Médica, FMRPUniversidade de São Paulo—USPRibeirão PretoBrazil
  4. 4.Departamento de Física e Matemática, FFCLRPUniversidade de São Paulo–USPRibeirão PretoBrazil
  5. 5.BotucatuBrazil

Personalised recommendations