Skip to main content

Advertisement

Log in

Screening of Lipid Carriers and Characterization of Drug-Polymer-Lipid Interactions for the Rational Design of Polymer-Lipid Hybrid Nanoparticles (PLN)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The thermodynamics and solid state properties of components and their interactions in a formulation for polymer-lipid hybrid nanoparticles (PLN) were characterized for screening lead lipid carriers and rational design of PLN.

Methods

Verapamil HCl (VRP) was chosen as a model drug and dextran sulfate sodium (DS) as a counter-ionic polymer. Solubility parameters of VRP, VRP-DS complex, and various lipids were calculated and partition of VRP and VRP-DS in lipids was determined. Thermodynamics of VRP binding to DS was determined by isothermal titration calorimetry (ITC). The solid state properties of individual components and their interactions were characterized using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD).

Results

Dodecanoic acid (DA) was identified as the best lipid carrier among all lipids tested based on the solubility parameters and partition coefficients. VRP-DS complexation was a thermodynamically favorable process. Maximum binding capacity of DS and the highest drug loading capacity of DA were obtained at an equal ionic molar ratio of DS to VRP. In the PLN formulation, DA remained its crystal structure but had a slightly lower melting point, while VRP-DS complex was in an amorphous form.

Conclusions

Drug loading efficiency and capacity of a lipid matrix depend on the VRP-DS binding and the interactions of the complex with the lipid. A combined analysis of solubility parameters and partition coefficients is useful for screening lipid candidates for PLN preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DA:

dodecanoic acid

DDI:

distilled and deionized

DS:

dextran sulfate sodium salt

DSC:

differential scanning calorimetry

ITC:

isothermal titration calorimetry

MP:

melting point

PLN:

polymer-lipid hybrid nanoparticles

PXRD:

powder X-ray diffraction

SLN:

solid lipid nanoparticles

VRP:

verapamil HCl

VRP-DS complex:

the complex of verapamil HCl and dextran sulfate sodium salt

References

  1. R. H. Müller, S. Maaßen, H. Weyhers, F. Specht, and J. S. Lucks. Cytotoxicity of magnetite loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles (SLN). Int. J. Pharm. 138:85–94 (1996).

    Article  Google Scholar 

  2. C. Schwarz, W. Mehnert, J. S. Lucks, and R. H. Müller. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release 30:83–96 (1994).

    Article  CAS  Google Scholar 

  3. R. H. Müller, W. Mehnert, J. S. Lucks, C. Schwarz, A. zur Muhlen, H. Weyhers, C. Freitas, and D. Ruhl. Solid lipid nanoparticles (SLN)–an alternative colloidal carrier system for controlled drug delivery. Eur. Pharm. Biopharm. 41:62–69 (1995).

    Google Scholar 

  4. S. A. Wissing, O. Kayser, and R. H. Müller. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56:1257–1272 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. W. Mehnert, and K. Mader. Solid lipid nanoparticles, production, characterization and applications. Adv. Drug Deliv. Rev. 47:165–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. K. Westesen, H. Bunjes, and M. H. J. Koch. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release. 48:223–236 (1997).

    Article  CAS  Google Scholar 

  7. V. Jenning, and S. Gohla. Comparison of wax and glyceride solid lipid nanoparticles (SLN). Int. J. Pharm. 196:219–222 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm. 117:243–246 (1995).

    Article  CAS  Google Scholar 

  9. G. P. Zara, R. Cavalli, A. Fundaro, A. Bargoni, O. Caputo, and M. R. Gasco. Pharmacokinetics of doxorubicin incorporated in solid lipid nanoparticles (SLN). Pharm. Res. 40:281–286 (1999).

    Article  CAS  Google Scholar 

  10. R. Cavalli, M. R. Gasco, P. Chetoni, S. Burgalassi, and F. M. Saettone. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 238:241–245 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. H. L. Wong, R. Bendayan, A. M. Rauth, and X. Y. Wu. Development of solid lipid nanoparticles containing ionically complexed chemometherapeutic drugs and chemosensitizers. J. Pharm. Sci. 93:1993–2008 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. H. L. Wong, A. M. Rauth, R. Bendayan, and X. Y. Wu. A new solid lipid nanoparticle formulation increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. In press.

  13. H. L. Wong. Ph.D. dissertation, University of Toronto, Canada, 2006.

  14. R. C. Rowe. Polar/nonpolar interactions in the granulation of organic substrates with polymer binding agents. Int. J. Pharm. 56:117–224 (1989).

    Article  CAS  Google Scholar 

  15. D. J. Greenhalgh, A. C. Williams, P. Timmins, and P. York. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 88:1182–1190 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. S. Schenderlein, M. Lück, and B. W. Müller. Partial solubility parameters of poly(d,l-lactide-co-glycolide). Int. J. Pharm. 286:19–26 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. R. H. Müller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of art. Eur. J. Pharm. Biopharm. 50:161–177 (2000).

    Article  PubMed  Google Scholar 

  18. P. Bummer. Physical chemical considerations of lipid-based oral drug delivery-solid lipid nanoparticles. Crit. Rev. Therap. Drug Carr. Syst. 21:1–19 (2004).

    Article  CAS  Google Scholar 

  19. P. Mura, A. Manderrioli, G. Bramanti, S. Furlanetto, and S. Pinzauti. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int. J. Pharm. 119:71–79 (1995).

    Article  CAS  Google Scholar 

  20. G. A. G. Novoa, J. Heinämäki, S. Mirza, O. Antikainen, A. I. Colarte, A. S. Paz, and J. Yliruusi. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur. J. Pharm. Biopharm. 59:343–350 (2005).

    Article  CAS  Google Scholar 

  21. B. Hancock, P. York, and R. C. Rowe. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 148:1–21 (1997).

    Article  CAS  Google Scholar 

  22. J. Barra, P. Bustamante, and E. Doelker. Use of the solubility parameter and surface energy concepts in the formulation of solid dosage forms. S.T.P. Pharm. Sci. 9:293–305 (1999).

    CAS  Google Scholar 

  23. J. L. Garson. The influence of polarity on the solubility parameter concept. J. Paint Technol. 38:43–57 (1966).

    Google Scholar 

  24. R. F. Fedors. A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Engin. Sci. 14:147–154 (1974).

    Article  CAS  Google Scholar 

  25. D. W. Van Krevelen. Cohesive properties and solubility. In D.V. Van Krevelen. (ed.), Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contribution. Elsevier, New York, 1990, pp. 189–224.

    Google Scholar 

  26. I. Jelesarov, and H. R. Bosshard. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12:3–18 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. C. M. Hansen. The three dimensional solubility parameters—key to paint component affinities. 1. Solvents, plasticizers, polymers and resins. J. Paint Technol. 39:104–117 (1967).

    CAS  Google Scholar 

  28. R. C. Rowe. Interactions of lubricants with microcrystalline cellulose and anhydrous lactose—a solubility parameter approach. Int. J. Pharm. 41:223–226 (1988).

    Article  CAS  Google Scholar 

  29. G. Puglisi, N. A. Santagati, R. Pignatello, C. Ventura, F. A. Bottino, S. Mangiafico, and G. Mazzone. Inclusion complexation of 4-biphenylacetic acid with β-cyclodextrin. Drug Dev. Ind. Pharm. 16:395–413 (1990).

    Article  CAS  Google Scholar 

  30. F. Han, N. Taulier, and T. V. Chalikian. Association of the minor groove binding drug Hoechst 33258 with d(CGCGAATTCGCG)2: volumetric, calorimetric, and spectroscopic characterizations. Biochem. 44:9785–9794 (2005).

    Article  CAS  Google Scholar 

  31. A. zur Mühlen, C. Schwarz, and W. Mehnert. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur. J. Pharm. Biopharm. 45:149–155 (1998).

    Article  PubMed  Google Scholar 

  32. C. Freitas and R. H. Müller. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47:125–132 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institute of Health Research. The authors would like to thank Dr. Sr. Petrov, Department of Chemistry, University of Toronto, for his comments on the PXRD patterns; Dr. T.V. Chalikian and Dr. Lakshmi P. Kotra for kind permission on use of ITC and a freeze drier, respectively. In addition, the discussion with Ho-lun Wong about SLN, Jubo Liu about solubility parameters and Ms. Feixue Han for help with ITC data fitting; the kind donations of free samples from Gattefossé Inc. (Canada), and the Ontario Graduate Scholarship in Science and Technology (OGSST) to Y. Li are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Taulier, N., Rauth, A.M. et al. Screening of Lipid Carriers and Characterization of Drug-Polymer-Lipid Interactions for the Rational Design of Polymer-Lipid Hybrid Nanoparticles (PLN). Pharm Res 23, 1877–1887 (2006). https://doi.org/10.1007/s11095-006-9033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9033-2

Key words

Navigation