Pharmaceutical Research

, Volume 23, Issue 8, pp 1827–1834 | Cite as

Mannose-6-Phosphate/Insulin-Like Growth Factor-II Receptors may Represent a Target for the Selective Delivery of Mycophenolic Acid to Fibrogenic Cells

  • Rick Greupink
  • Hester I. Bakker
  • Harry van Goor
  • Martin H. de Borst
  • Leonie Beljaars
  • Klaas Poelstra
Research Paper


The insulin-like growth factor axis plays an important role in fibrogenesis. However, little is known about mannose-6-phosphate/Insulin-like growth factor-II receptor (M6P/IGF-IIR) expression during fibrosis. When expressed preferentially on fibrogenic cells, this receptor may be used to selectively deliver drugs to these cells. We investigated M6P/IGF-IIR expression in livers of bile duct-ligated (BDL) rats and in renal vascular walls of renin transgenic TGR(mRen2)27 rats. Both models are characterized by fibrogenic processes. Furthermore, we studied whether drug delivery via M6P/IGF-II-receptor-mediated uptake is possible in fibroblasts.

Materials and Methods/Results

M6P/IGF-IIR mRNA expression was investigated 3, 7 and 10 days after BDL. At all time-points hepatic M6P/IGF-IIR expression was significantly increased compared to healthy controls. Moreover, immunohistochemical staining revealed that α-sma-positive cells were M6P/IGF-IIR-positive. In kidneys of TGR(mRen2)27 rats, the number of M6P/IGF-IIR-positive arteries per microscopic field was increased 5.5 fold over healthy controls. To examine whether M6P/IGF-IIRs could be used as a port of entry for drugs, we coupled mycophenolic acid (MPA) to mannose-6-phosphate-modified human serum albumin (M6PHSA). M6PHSA-MPA inhibited 3T3-fibroblast proliferation dose-dependently, which was reversed by co-incubation with excess M6PHSA, but not by HSA.


M6P/IGF-IIRs are expressed by fibrogenic cells and may be used for receptor-mediated intracellular delivery of the antifibrogenic drug MPA.

Key words

drug targeting liver fibrosis mycophenolic acid TGR(mRen2)27 rats vascular lesions 



bromodeoxy uridine


hepatic stellate cell


mycophenolic acid


mannose-6-phosphate-modified human serum albumin


mannose-6-phosphate/insulin-like growth factor-II receptor


phosphate buffered saline


TGR(mRen2)27 transgenic rats


α-smooth muscle actin



This study was financially supported by the Dutch Foundation for Technical Sciences (STW), grant no GFA.5460. Prof. D.K.F. Meijer is gratefully acknowledged for valuable scientific discussion and review of the manuscript.


  1. 1.
    D. W. Powell, R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada, and A. B. West. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 277:C1–C9 (1999).PubMedGoogle Scholar
  2. 2.
    S. L. Friedman. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 275:2247–2250 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    M. N. Babapulle and M. J. Eisenberg. Coated stents for the prevention of restenosis. Part I. Circulation 106:2734–2740 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    M. N. Babapulle and M. J. Eisenberg. Coated stents for the prevention of restenosis. Part II. Circulation 106:2859–2866 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    D. P. Faxon, V. Fuster, P. Libby, J. A. Beckman, W. R. Hiatt, R. W. Thompson, J. N. Topper, B. H. Annex, J. H. Rundback, R. P. Fabunmi, R. M. Robertson, and J. Loscalzo. Atherosclerotic vascular disease conference: Writing Group III: pathophysiology. Circulation 109:2617–2625 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    I. A. Hauser, L. Renders, H. H. Radeke, R. B. Sterzel, and M. Goppelt-Struebe. Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol. Dial. Transplant. 14:58–63 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Heinz, T. Hudde, K. Heise, and K. P. Steuhl. Antiproliferative effect of mycophenolate mofetil on cultured human Tenon fibroblasts. Graefes Arch. Clin. Exp. Ophthalmol. 240:408–414 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    A. C. Allison and T. Eunson. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Ji, J. Gu, A. M. Makhov, J. D. Griffith, and B. S. Mitchell. Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic acid by GTP. J. Biol. Chem. 281:206–212 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Shimizu, M. Takahashi, S. Takeda, S. Inoue, J. Fujishiro, Y. Hakamata, T. Kaneko, T. Murakami, K. Takeuchi, I. Takeyoshi, Y. Morishita, and E. Kobayashi. Mycophenolate mofetil prevents transplant arteriosclerosis by direct inhibition of vascular smooth muscle cell proliferation. Transplantation 77:1661–1667 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Romero, B. Rodriguez-Iturbe, H. Pons, G. Parra, Y. Quiroz, J. Rincon, and L. Gonzalez. Mycophenolate mofetil treatment reduces cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis 152:127–133 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Greupink, H. I. Bakker, C. Reker-Smit, A. M. Loenen-Weemaes, R. J. Kok, D. K. Meijer, L. Beljaars, and K. Poelstra. Studies on the targeted delivery of the antifibrogenic compound mycophenolic acid to the hepatic stellate cell. J. Hepatol. 43:884–892 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    D. R. Nelson, Z. Tu, C. Soldevila-Pico, M. Abdelmalek, H. Zhu, Y. L. Xu, R. Cabrera, C. Liu, and G. L. Davis. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 38:859–868 (2003).PubMedGoogle Scholar
  14. 14.
    J. J. Maher. Interactions between hepatic stellate cells and the immune system. Semin. Liver Dis. 21:417–426 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Poynard, P. Mathurin, C. L. Lai, D. Guyader, R. Poupon, M. H. Tainturier, R. P. Myers, M. Muntenau, V. Ratziu, M. Manns, A. Vogel, F. Capron, A. Chedid, and P. Bedossa. A comparison of fibrosis progression in chronic liver diseases. J. Hepatol. 38:257–265 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    Z. Shi, A. E. Wakil, and D. C. Rockey. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc. Natl. Acad. Sci. U.S.A. 94:10663–10668 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    P. J. de Bleser, P. Jannes, S. C. van Buul-Offers, C. M. Hoogerbrugge, C. F. van Schravendijk, T. Niki, V. Rogiers, J. L. van den Brande, E. Wisse, and A. Geerts. Insulinlike growth factor-II/mannose 6-phosphate receptor is expressed on CCl4-exposed rat fat-storing cells and facilitates activation of latent transforming growth factor-beta in cocultures with sinusoidal endothelial cells. Hepatology 21:1429–1437 (1995).PubMedGoogle Scholar
  18. 18.
    J. A. Weiner, A. Chen, and B. H. Davis. E-box-binding repressor is down-regulated in hepatic stellate cells during up-regulation of mannose 6-phosphate/insulin-like growth factor-II receptor expression in early hepatic fibrogenesis. J. Biol. Chem. 273:15913–15919 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    P. J. de Bleser, C. D. Scott, T. Niki, G. Xu, E. Wisse, and A. Geerts. Insulin-like growth factor II/mannose 6-phosphate-receptor expression in liver and serum during acute CCl4 intoxication in the rat. Hepatology 23:1530–1537 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Beljaars, G. Molema, B. Weert, H. Bonnema, P. Olinga, G. M. Groothuis, D. K. Meijer, and K. Poelstra. Albumin modified with mannose 6-phosphate: a potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells. Hepatology 29:1486–1493 (1999).PubMedCrossRefGoogle Scholar
  21. 21.
    M. H. de Borst, G. Navis, R. A. de Boer, S. Huitema, L. M. Vis, W. H. van Gilst, and H. van Goor. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats. Lab. Invest. 83:1761–1770 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    M. J. Brosnan, A. M. Devlin, J. S. Clark, J. J. Mullins, and A. F. Dominiczak. Different effects of antihypertensive agents on cardiac and vascular hypertrophy in the transgenic rat line TGR(mRen2)27. Am. J. Hypertens. 12:724–731 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Beljaars, K. Poelstra, G. Molema, and D. K. Meijer. Targeting of sugar- and charge-modified albumins to fibrotic rat livers: the accessibility of hepatic cells after chronic bile duct ligation. J. Hepatol. 29:579–588 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    R. J. Duncan, P. D. Weston, and R. Wrigglesworth. A new reagent which may be used to introduce sulfhydryl groups into proteins, and its use in the preparation of conjugates for immunoassay. Anal. Biochem. 132:68–73 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Zaina and J. Nilsson. Insulin-like growth factor II and its receptors in atherosclerosis and in conditions predisposing to atherosclerosis. Curr. Opin. Lipidol. 14:483–489 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Zaina, L. Pettersson, B. Ahren, L. Branen, A. B. Hassan, M. Lindholm, R. Mattsson, J. Thyberg, and J. Nilsson. Insulin-like growth factor II plays a central role in atherosclerosis in a mouse model. J. Biol. Chem. 277:4505–4511 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Novosyadlyy, K. Tron, J. Dudas, G. Ramadori, and J. G. Scharf. Expression and regulation of the insulin-like growth factor axis components in rat liver myofibroblasts. J. Cell Physiol. 199:388–398 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    J. G. Scharf, T. Knittel, F. Dombrowski, L. Muller, B. Saile, T. Braulke, H. Hartmann, and G. Ramadori. Characterization of the IGF axis components in isolated rat hepatic stellate cells. Hepatology 27:1275–1284 (1998).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Pugliese, F. Pricci, N. Locuratolo, G. Romeo, G. Romano, S. Giannini, B. Cresci, G. Galli, C. M. Rotella, and U. Di Mario. Increased activity of the insulin-like growth factor system in mesangial cells cultured in high glucose conditions. Relation to glucose-enhanced extracellular matrix production. Diabetologia 39:775–784 (1996).PubMedCrossRefGoogle Scholar
  30. 30.
    N. M. Dahms and M. K. Hancock. P-type lectins. Biochim. Biophys. Acta 1572:317–340 (2002).PubMedGoogle Scholar
  31. 31.
    P. A. Dennis and D. B. Rifkin. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc. Natl. Acad. Sci. U. S. A. 88:580–584 (1991).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Bataller, E. Gabele, C. J. Parsons, T. Morris, L. Yang, R. Schoonhoven, D. A. Brenner, and R. A. Rippe. Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology 41:1046–1055 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    P. J. Admiraal, C. A. van Kesteren, A. H. Danser, F. H. Derkx, W. Sluiter, and M. A. Schalekamp. Uptake and proteolytic activation of prorenin by cultured human endothelial cells. J. Hypertens. 17:621–629 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    M. M. van den Eijnden, J. J. Saris, R. J. de Bruin, E. de Wit, W. Sluiter, T. L. Reudelhuber, M. A. Schalekamp, F. H. Derkx, and A. H. Danser. Prorenin accumulation and activation in human endothelial cells: importance of mannose 6-phosphate receptors. Arterioscler. Thromb. Vasc. Biol. 21:911–916 (2001).PubMedGoogle Scholar
  35. 35.
    T. Braulke and G. Mieskes. Role of protein phosphatases in insulin-like growth factor II (IGF II)-stimulated mannose 6-phosphate/IGF II receptor redistribution. J. Biol. Chem. 267:17347–17353 (1992).PubMedGoogle Scholar
  36. 36.
    D. F. Smee, M. Bray, and J. W. Huggins. Antiviral activity and mode of action studies of ribavirin and mycophenolic acid against orthopoxviruses in vitro. Antivir. Chem. Chemother. 12:327–335 (2001).PubMedGoogle Scholar
  37. 37.
    H. Tedesco-Silva, M. C. Bastien, L. Choi, C. Felipe, J. Campestrini, F. Picard, and R. Schmouder. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant. Proc. 37:852–855 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    J. H. LeBowitz, J. H. Grubb, J. A. Maga, D. H. Schmiel, C. Vogler, and W. S. Sly. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc. Natl. Acad. Sci. U. S. A. 101:3083–3088 (2004).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Beljaars, G. Molema, D. Schuppan, A. Geerts, P. J. de Bleser, B. Weert, D. K. Meijer, and K. Poelstra. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J. Biol. Chem. 275:12743–12751 (2000).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Beljaars, B. Weert, A. Geerts, D. K. Meijer, and K. Poelstra. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem. Pharmacol. 66:1307–1317 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Rick Greupink
    • 1
  • Hester I. Bakker
    • 1
  • Harry van Goor
    • 2
  • Martin H. de Borst
    • 2
  • Leonie Beljaars
    • 1
  • Klaas Poelstra
    • 1
  1. 1.Groningen University Institute for Drug Exploration (GUIDE), Department of Pharmacokinetics and Drug DeliveryUniversity of GroningenGroningenThe Netherlands
  2. 2.Groningen University Institute for Drug Exploration (GUIDE), Department of Pathology and Laboratory MedicineUniversity Medical Centre GroningenGroningenThe Netherlands

Personalised recommendations