Pharmaceutical Research

, Volume 23, Issue 8, pp 1868–1876 | Cite as

Biophysical and Structural Characterization of Polyethylenimine-Mediated siRNA Delivery in Vitro

  • Amy C. Richards Grayson
  • Anne M. Doody
  • David Putnam
Research Paper


The goals of this study were as follows: 1) to evaluate the efficacy of different polyethylenimine (PEI) structures for siRNA delivery in a model system, and 2) to determine the biophysical and structural characteristics of PEI that relate to siRNA delivery.

Materials and Methods

Biophysical characterization (effective diameter and zeta potential), cytotoxicities, relative binding affinities and in vitro transfection efficiencies were determined using nanocomplexes formed from PEI's of 800, 25,000, (both branched) and 22,000 (linear) molecular weights at varying N:P ratios and siRNA concentrations. The HR5-CL11 cell line stably expressing luciferase was used as a model system in vitro.


Successful siRNA delivery was observed within a very narrow window of conditions, and only with the 25,000 branched PEI at an N:P ratio of 6:1 and 8:1 and with 200 nM siRNA. While the zeta potential and size of PEI:siRNA complexes correlated to transfection efficacy in some cases, complex stability may also affect transfection efficacy.


The ability of PEI to transfer functionally active siRNA to cells in culture is surprisingly dependent on its biophysical and structural characteristics when compared to its relative success and ease of use for DNA delivery.

Key Words

luciferases polyethylenimine RNA interference small interfering RNA transfection 



4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid




small interfering RNA

22 K L-PEI

22,000 molecular weight linear PEI

25 K B-PEI

25,000 molecular weight branched PEI

800 B-PEI

800 molecular weight branched PEI



Research described in this article was supported in part by Philip Morris USA Inc. and Philip Morris Internationaland in part by the Ladies Auxiliary to the Veterans of Foreign Wars Cancer Research Fellowship. The expert help and assistance of Mr. Peter Zawaneh is greatly appreciated.


  1. 1.
    A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 (2001).CrossRefPubMedGoogle Scholar
  3. 3.
    S. M. Hammond, E. Bernstein, D. Beach, and G. J. Hannon. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophilia cells. Nature 404:293–296 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    P. Zamore, T. Tuschl, P. Sharp, and D. Bartel. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33 (2000).CrossRefPubMedGoogle Scholar
  5. 5.
    T. R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    G. Sui, C. Soohoo, E. B. Affar, F. Gay, Y. Shi, W.C. Forrester, and Y. Shi. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99:5515–5520 (2002).CrossRefPubMedGoogle Scholar
  7. 7.
    C. R. Paul, P. D. Good, I. Winer, and D. R. Engelke. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20:505–508 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    D. Gou, N. Jin, and L. Liu. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS Lett. 539:113–118 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Q. Harper and B. L. Davidson. Plasmid-based RNA interference: construction of small-hairpin RNA expression vectors. Methods Mol. Biol. 309:219–236 (2005).PubMedGoogle Scholar
  10. 10.
    Y. Guo, J. Liu, Y.-H. Li, T.-B. Song, J. Wu, C.-X. Zheng, and C.-F. Xue. Effect of vector-expressed shRNAs on hTERT expression. World J. Gastroenterol. 11:2912–2915 (2005).PubMedGoogle Scholar
  11. 11.
    N. Miyagishi and K. Taira. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20:497–500 (2002).CrossRefPubMedGoogle Scholar
  12. 12.
    N. S. Lee, T. Dohjima, G. Bauer, H. Li, M.-J. Li, A. Ehsani, P. Salvaterra, and J. Rossi. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20:500–505 (2002).PubMedGoogle Scholar
  13. 13.
    O. Boussif, P. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297–7301 (1995).CrossRefPubMedGoogle Scholar
  14. 14.
    B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI) complexed siRNA in vivo. Gene Ther. 12:461–466 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    M. L. Read, S. Singh, Z. Ahmed, M. Stevenson, S. S. Briggs, D. Oupicky, L. B. Barrett, R. Spice, M. Kendall, M. Berry, J. A. Preece, A. Logan, and L. W. Seymour. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86 (2005).CrossRefPubMedGoogle Scholar
  16. 16.
    Z. Hassani, G. F. Lemkine, P. Erbacher, K. Palmier, G. Alfama, C. Giovannangeli, J.-P. Behr, and B. A. Demeneix. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J. Gene Med. 7:198–207 (2005).CrossRefPubMedGoogle Scholar
  17. 17.
    M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, and A. M. Klibanov. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102:5679–5684 (2005).CrossRefPubMedGoogle Scholar
  18. 18.
    T. Merdan, K. Kunath, D. Fischer, J. Kopecek, and T. Kissel. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19:140–146 (2002).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Aigner, D. Fischer, T. Merdan, C. Brus, T. Kissel, and F. Czubayko. Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther. 9:1700–1707 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    S. Dheur, N. Dias, A. van Aerschot, P. Herdewijn, T. Bettinger, J.-S. Rémy, C. Hélène, and E. T. Saison-Behmoaras. Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:515–525 (1999).PubMedGoogle Scholar
  21. 21.
    J.-P. Behr. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36 (1997).Google Scholar
  22. 22.
    A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–663 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    W. T. Godbey, K. K. Wu, and A. G. Mikos. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 45:268–275 (1999).CrossRefPubMedGoogle Scholar
  25. 25.
    C.-H. Lee, Y.-H. Ni, C.-C. Chen, C.-K. Chou, and F.-H. Chang. Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. Biochim. Biophys. Acta 1611:55–62 (2003).CrossRefPubMedGoogle Scholar
  26. 26.
    S. Choosakoonkriang, B. A. Lobo, G. S. Koe, J. G. Koe, and C. R. Middaugh. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci. 92:1710–1722 (2003).CrossRefPubMedGoogle Scholar
  27. 27.
    B. Brissault, A. Kichler, C. Guis, C. Leborgne, O. Danos, and H. Cheradame. Synthesis of linear polyethylenimine derivatives for DNA delivery. Bioconjug. Chem. 14:581–587 (2003).CrossRefPubMedGoogle Scholar
  28. 28.
    S. Ferrari, E. Moro, A. Pettenazo, J. P. Behr, F. Zacchello, and M. Scarpa. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther. 2:1100–1106 (1997).CrossRefGoogle Scholar
  29. 29.
    D. Goula, C. Benoist, S. Mantero, G. Merlo, G. Levi, and B. A. Demeneix. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5:1291–1295 (1998).CrossRefPubMedGoogle Scholar
  30. 30.
    D. Goula, J. S. Remy, P. Erbacher, M. Wasowicz, G. Levi, B. Abdallah, and B. A. Demeneix. Size, diffusibility, and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5:712–717 (1998).CrossRefPubMedGoogle Scholar
  31. 31.
    S.-M. Zou, P. Erbacher, J.-S. Remy, and J.-P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128–134 (2000).CrossRefPubMedGoogle Scholar
  32. 32.
    G. F. Lemkine and B. A. Demeneix. Polyethylenimines for in vivo gene delivery. Curr. Opin. Mol. Ther. 3:178–182 (2001).PubMedGoogle Scholar
  33. 33.
    D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 98:1200–1205 (2001).CrossRefPubMedGoogle Scholar
  34. 34.
    A. N. Zelikin, E. S. Trukhanova, D. A. Putnam, V. A. Izumrudov, and A. A. Litmanovich. Selectivity of binding of polycations to DNA and synthetic polyanions. Polymer Preprints 44:519–520 (2003).Google Scholar
  35. 35.
    N. E. Bishop. An update on non-clathrin-coated endocytosis. Rev. Med. Virol. 7:199–209 (1997).CrossRefPubMedGoogle Scholar
  36. 36.
    U. Rungsardthong, T. Ehtezazi, L. Bailey, S. P. Armes, M. C. Garnett, and S. Stolnik. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules 4:683–690 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    M. Gossen, S. Freundlieb, G. Bender, G. Müller, W. Hillen, and H. Bujard. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769 (1995).CrossRefPubMedGoogle Scholar
  38. 38.
    Z. Ma, J. Li, F. He, A. Wilson, B. Pitt, and S. Li. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330:755–759 (2005).CrossRefPubMedGoogle Scholar
  39. 39.
    V. Hornung, M. Guenthner-Biller, C. Bourquin, A. Ablasser, M. Schlee, S. Uematsu, A. Noronha, M. Manoharan, S. Akira, A. de Fougerolles, S. Endres, and G. Hartmann. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11:263–270 (2005).CrossRefPubMedGoogle Scholar
  40. 40.
    A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, and I. MacLachlan. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23:457–462 (2005).CrossRefPubMedGoogle Scholar
  41. 41.
    M. Sioud. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348:1079–1090 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    Y. Federov, A. King, E. Anderson, J. Karpilow, D. Ilsley, W. Marshall, and A. Khvorova. Different delivery methods—different expression profiles. Nat. Methods 2:241–242 (2005).Google Scholar
  43. 43.
    R. Smolarczyk, T. Cichoń, A. Sochanik, and S. Szala. Negligible induction of IFN-γ, IL-12, and TNF-α by DNA-PEI 750 kDa/albumin complexes. Cytokine 29:283–287 (2005).CrossRefPubMedGoogle Scholar
  44. 44.
    K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89:113–125 (2003).CrossRefPubMedGoogle Scholar
  45. 45.
    E. Ramsay, J. Hadgraft, J. Birchall, and M. Gumbleton. Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. Int. J. Pharm. 210:97–107 (2000).CrossRefPubMedGoogle Scholar
  46. 46.
    D. Fischer, T. Bieber, Y. Li, H.-P. Elsässer, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999).CrossRefPubMedGoogle Scholar
  47. 47.
    S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11:990–995 (2005).CrossRefPubMedGoogle Scholar
  48. 48.
    D. Wang, A. S. Narang, M. Kotb, A. O. Gaber, D. D. Miller, S. W. Kim, and R. I. Mahato. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3:1197–1207 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Amy C. Richards Grayson
    • 1
  • Anne M. Doody
    • 1
  • David Putnam
    • 1
  1. 1.Department of Biomedical Engineering and the School of Chemical and Biomolecular Engineering, 270 Olin HallCornell UniversityIthacaUSA

Personalised recommendations