Advertisement

Pharmaceutical Research

, Volume 23, Issue 6, pp 1209–1216 | Cite as

Interaction of Ibuprofen and Other Structurally Related NSAIDs with the Sodium-Coupled Monocarboxylate Transporter SMCT1 (SLC5A8)

  • Shirou Itagaki
  • Elangovan Gopal
  • Lina Zhuang
  • You-Jun Fei
  • Seiji Miyauchi
  • Puttur D. Prasad
  • Vadivel Ganapathy
Research Paper

Purpose

Sodium-coupled monocarboxylate transporter 1 (SMCT1) is a Na+-coupled transporter for monocarboxylates. Many nonsteroidal anti-inflammatory drugs (NSAIDs) are monocarboxylates. Therefore, we investigated the interaction of these drugs with human SMCT1 (hSMCT1).

Methods

We expressed hSMCT1 in a mammalian cell line and in Xenopus laevis oocytes and used the uptake of nicotinate and propionate-induced currents to monitor its transport function, respectively. We also used [14C]-nicotinate and [3H]-ibuprofen for direct measurements of uptake in oocytes.

Results

In mammalian cells, hSMCT1-mediated nicotinate uptake was inhibited by ibuprofen and other structurally related NSAIDs. The inhibition was Na+ dependent. With ibuprofen, the concentration necessary for 50% inhibition was 64 ± 16 μM. In oocytes, the transport function of hSMCT1 was associated with inward currents in the presence of propionate. Under identical conditions, ibuprofen and other structurally related NSAIDs failed to induce inward currents. However, these compounds blocked propionate-induced currents. With ibuprofen, the blockade was dose dependent, Na+ dependent, and competitive. However, there was no uptake of [3H]-ibuprofen into oocytes expressing hSMCT1, although the uptake of [14C]-nicotinate was demonstrable under identical conditions.

Conclusions

Ibuprofen and other structurally related NSAIDs interact with hSMCT1 as blockers of its transport function rather than as its transportable substrates.

Key Words

blocker electrophysiology ibuprofen sodium dependence SMCT1 

Abbreviations

HRPE

human retinal pigment epithelial

MCT

monocarboxylate transporter

NMDG

N-methyl-d-glucamine

NSAID

nonsteroidal anti-inflammatory drug

SMCT

sodium-coupled monocarboxylate transporter

References

  1. 1.
    Li, H., Myeroff, L., Smiraglia, D., Romero, M. F., Pretlow, T. P., Kasturi, L., Lutterbaugh, J., Rerko, R. M., Casey, G., Issa, J. P., Willis, J., Willson, J. K., Plass, C., Markowitz, S. D. 2003SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancersProc. Natl. Acad. Sci. USA10084128417PubMedCrossRefGoogle Scholar
  2. 2.
    Miyauchi, S., Gopal, E., Fei, Y. J., Ganapathy, V. 2004Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acidsJ. Biol. Chem.2791329313296PubMedCrossRefGoogle Scholar
  3. 3.
    Coady, M. J., Chang, M. H., Charron, F. M., Plata, C., Wallendorff, B., Sah, J. F., Markowitz, S. D., Romero, M. F., Lapointe, J. Y. 2004The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporterJ. Physiol.557719731PubMedCrossRefGoogle Scholar
  4. 4.
    Gopal, E., Fei, Y. J., Sugawara, M., Miyauchi, S., Zhuang, L., Martin, P. M., Smith, S. B., Prasad, P. D., Ganapathy, V. 2004Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactateJ. Biol. Chem.2794452244532PubMedCrossRefGoogle Scholar
  5. 5.
    Gopal, E., Fei, Y. J., Miyauchi, S., Zhuang, L., Prasad, P. D., Ganapathy, V. 2005Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene familyBiochem. J.388309316PubMedCrossRefGoogle Scholar
  6. 6.
    Ganapathy, V., Gopal, E., Miyauchi, S., Prasad, P. D. 2005Biological functions of SLC5A8, a candidate tumour suppressorBiochem. Soc. Trans.33237240PubMedCrossRefGoogle Scholar
  7. 7.
    Mortensen, P. B., Clausen, M. R. 1996Short-chain fatty acids in the human colon: relation to gastrointestinal health and diseaseScand. J. Gastroenterol.216132148Google Scholar
  8. 8.
    Velazquez, O. C., Lederer, H. M., Rombeau, J. L. 1997Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implicationsAdv. Exp. Med. Biol.427123134PubMedGoogle Scholar
  9. 9.
    Rodriguez, A. M., Perron, B., Lacroix, L., Caillou, B., Leblanc, G., Schlumberger, M., Bidart, J. M., Pourcher, T. 2002Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytesJ. Clin. Endocrinol. Metab.8735003503PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, J. S., Faller, D. V., Spanjaard, R. A. 2003Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics?Curr. Cancer Drug Targets3219236PubMedCrossRefGoogle Scholar
  11. 11.
    N. Gupta, P. M. Martin, P. D. Prasad, and V. Ganapathy. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 78:2419–2425 (2006).Google Scholar
  12. 12.
    Katsura, T., Inui, K. 2003Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulationDrug Metab. Pharmacokinet.18115PubMedCrossRefGoogle Scholar
  13. 13.
    Mizuno, N., Niwa, T., Yotsumoto, Y., Sugiyama, Y. 2003Impact of drug transporter studies on drug discovery and developmentPharmacol. Rev.55425461PubMedCrossRefGoogle Scholar
  14. 14.
    Ganapathy, V., Prasad, P. D., Ganapathy, M. E., Leibach, F. H. 2000Placental transporters relevant to drug distribution across the maternal–fetal interfaceJ. Pharmacol. Exp. Ther.294413420PubMedGoogle Scholar
  15. 15.
    Ganapathy, V., Prasad, P. D. 2005Role of transporters in placental transfer of drugsToxicol. Appl. Pharmacol.207381387PubMedCrossRefGoogle Scholar
  16. 16.
    Halestrap, A. P., Price, N. T. 1999The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulationBiochem. J.343281299PubMedCrossRefGoogle Scholar
  17. 17.
    Tamai, I., Takanaga, H., Maeda, H., Sai, Y., Ogihara, T., Higashida, H., Tsuji, A. 1995Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acidsBiochem. Biophys. Res. Commun.214482489PubMedCrossRefGoogle Scholar
  18. 18.
    Choi, J. S., Jin, M. J., Han, H. K. 2005Role of monocarboxylic acid transporters in the cellular uptake of NSAIDsJ. Pharm. Pharmacol.5711851189PubMedCrossRefGoogle Scholar
  19. 19.
    Peek, R. M.,Jr 2004Prevention of colorectal cancer through the use of COX-2 selective inhibitorsCancer Chemother. Pharmacol.54S50S56PubMedGoogle Scholar
  20. 20.
    Pereg, D., Lishner, M. 2005Non-steroidal anti-inflammatory drugs for the prevention and treatment of cancerJ. Intern. Med.258115123PubMedCrossRefGoogle Scholar
  21. 21.
    Ganji, S. H., Kamanna, V. S., Kashyap, M. L. 2003Niacin and cholesterol: role in cardiovascular diseaseJ. Nutr. Biochem.14298305PubMedCrossRefGoogle Scholar
  22. 22.
    McKenney, J. 2004New perspectives on the use of niacin in the treatment of lipid disordersArch. Intern. Med.164697705PubMedCrossRefGoogle Scholar
  23. 23.
    Konstan, M. W., Byard, P. J., Hoppel, C. L., Davis, P. B. 1995Effect of high-dose ibuprofen in patients with cystic fibrosisN. Engl. J. Med.332848854PubMedCrossRefGoogle Scholar
  24. 24.
    Rubin, A., Rodda, B. E., Warrick, P., Ridolfo, A. S., Gruber, C. M.,Jr 1972Physiological disposition of fenoprofen in man. II. Plasma and urine pharmacokinetics after oral and intravenous administrationJ. Pharm. Sci.61739745PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Shirou Itagaki
    • 1
  • Elangovan Gopal
    • 1
  • Lina Zhuang
    • 1
  • You-Jun Fei
    • 1
  • Seiji Miyauchi
    • 1
  • Puttur D. Prasad
    • 1
  • Vadivel Ganapathy
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyMedical College of GeorgiaAugustaUSA

Personalised recommendations