Pharmaceutical Research

, Volume 22, Issue 12, pp 2016–2022 | Cite as

Pharmacokinetic Significance of Renal OAT3 (SLC22A8) for Anionic Drug Elimination in Patients with Mesangial Proliferative Glomerulonephritis

  • Yuji Sakurai
  • Hideyuki Motohashi
  • Ken Ogasawara
  • Tomohiro Terada
  • Satohiro Masuda
  • Toshiya Katsura
  • Noriko Mori
  • Motokazu Matsuura
  • Toshio Doi
  • Atsushi Fukatsu
  • Ken-ichi Inui
Research Paper


Our previous studies showed that the mRNA level of human organic anion transporter (hOAT) 3 in the kidney was correlated with the rate of elimination of an anionic antibiotic cefazolin. However, the correlation coefficient was not so high. In the present study, therefore, we enrolled more patients to examine whether additional factors were responsible for the correlation.


hOAT mRNA levels in renal biopsy specimens were quantified using the real-time polymerase chain reaction method. The elimination rates for the free fraction of cefazolin were determined in patients with various renal diseases.


In the present study, the coefficient of correlation between the hOAT3 mRNA level and the elimination rates for the free fraction of cefazolin was not so high in the patients overall as in our previous study (r = 0.536). However, following the classification of renal diseases, a better correlation was obtained in patients with mesangial proliferative glomerulonephritis (r = 0.723). In contrast, multiple regression analyses including gender, age, and liver function did not result in any improvements in the correlation coefficients.


These results suggest that the hOAT3 mRNA level is a significant marker of pharmacokinetics with which to predict the rate of elimination of cefazolin in patients with mesangial proliferative glomerulonephritis.

Key Words

organic anion transporter human kidney renal diseases real-time PCR renal clearance 



This work was supported by a grant-in-aid for Comprehensive Research on Aging and Health from the Ministry ofHealth and Welfare of Japan (H15-Choju-006), by a grant-in-aid for Scientific Research from the Ministry of Education,Culture, Sports, Science, and Technology of Japan, by agrant-in-aid from the Japan Research Foundation for Clinical Pharmacology, and by the 21st Century COE program“KnowledgeInformation Infrastructure for Genome Science.”


  1. 1.
    Dettli, L. 1976Drug dosage in renal diseaseClin. Pharmacokinet.1126134PubMedGoogle Scholar
  2. 2.
    Shemesh, O., Golbetz, H., Kriss, J. P., Myers, B. D. 1985Limitations of creatinine as a filtration marker in glomerulopathic patientsKidney Int.28830838PubMedGoogle Scholar
  3. 3.
    Urakami, Y., Kimura, N., Okuda, M., Inui, K. 2004Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidneyPharm. Res.21976981PubMedCrossRefGoogle Scholar
  4. 4.
    Hori, R., Okumura, K., Kamiya, A., Nihira, H., Nakano, H. 1983Ampicillin and cephalexin in renal insufficiencyClin. Pharmacol. Ther.34792798PubMedCrossRefGoogle Scholar
  5. 5.
    Tett, S. E., Kirkpatrick, C. M., Gross, A. S., McLachlan, A. J. 2003Principles and clinical application of assessing alterations in renal elimination pathwaysClin. Pharmacokinet.4211931211PubMedGoogle Scholar
  6. 6.
    Pritchard, J. B., Miller, D. S. 1993Mechanisms mediating renal secretion of organic anions and cationsPhysiol. Rev.73765796PubMedGoogle Scholar
  7. 7.
    Inui, K., Okuda, M. 1998Cellular and molecular mechanisms of renal tubular secretion of organic anions and cationsClin. Exp. Nephrol.2100108Google Scholar
  8. 8.
    Inui, K., Masuda, S., Saito, H. 2000Cellular and molecular aspectsof drug transport in the kidneyKidney Int.58944958PubMedCrossRefGoogle Scholar
  9. 9.
    Burckhardt, B. C., Burckhardt, G. 2003Transport of organic anions across the basolateral membrane of proximal tubule cellsRev. Physiol., Biochem. Pharmacol.14695158Google Scholar
  10. 10.
    Sakurai, Y., Motohashi, H., Ueo, H., Masuda, S., Saito, H., Okuda, M., Mori, N., Matsuura, M., Doi, T., Fukatsu, A., Ogawa, O., Inui, K. 2004Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseasesPharm. Res.216167PubMedGoogle Scholar
  11. 11.
    Gilbert, R. E., Cooper, M. E. 1999The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?Kidney Int.5616271637PubMedCrossRefGoogle Scholar
  12. 12.
    Park, M. H., D'Agati, V., Appel, G. B., Pirani, C. L. 1986Tubulointerstitial disease in lupus nephritis: relationship to immune deposits, interstitial inflammation, glomerular changes, renal function, and prognosisNephron44309319PubMedCrossRefGoogle Scholar
  13. 13.
    Alexopoulos, E., Seron, D., Hartley, R. B., Cameron, J. S. 1990Lupus nephritis: correlation of interstitial cells with glomerular functionKidney Int.37100109PubMedGoogle Scholar
  14. 14.
    Motohashi, H., Sakurai, Y., Saito, H., Masuda, S., Urakami, Y., Goto, M., Fukatsu, A., Ogawa, O., Inui, K. 2002Gene expression levels and immunolocalization of organic ion transporters in the human kidneyJ. Am. Soc. Nephrol.13866874PubMedGoogle Scholar
  15. 15.
    Yano, I., Ito, T., Takano, M., Inui, K. 1997Evaluation of renal tubular secretion and reabsorption of levofloxacin in ratsPharm. Res.14508511PubMedCrossRefGoogle Scholar
  16. 16.
    Nath, K. A. 1998The tubulointerstitium in progressive renal diseaseKidney Int.54992994PubMedCrossRefGoogle Scholar
  17. 17.
    Floege, J., Feehally, J. 2000IgA nephropathy: recent developmentsJ. Am. Soc. Nephrol.1123952403PubMedGoogle Scholar
  18. 18.
    Ueo, H., Motohashi, H., Katsura, T., Inui, K. 2005Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1Biochem. Pharmacol7011041113PubMedCrossRefGoogle Scholar
  19. 19.
    Takeda, M., Sekine, T., Endou, H. 2000Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3)Life Sci.6710871093PubMedGoogle Scholar
  20. 20.
    Soodvilai, S., Chatsudthipong, V., Evans, K. K., Wright, S. H., Dantzler, W. H. 2004Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubulesAm. J. Physiol. Renal. Physiol.287F1021F1029PubMedCrossRefGoogle Scholar
  21. 21.
    S. Soodvilai, S. H. Wright, W. H. Dantzler, V. Chatsudthipong. Involvement of tyrosine kinase and PI3K in the regulation ofOAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am. J. Physiol. Renal. Physiol. in press.Google Scholar
  22. 22.
    Koya, D., King, G. L. 1998Protein kinase C activation and the development of diabetic complicationsDiabetes47859866PubMedGoogle Scholar
  23. 23.
    Park, S. H., Choi, H. J., Lee, J. H., Woo, C. H., Kim, J. H., Han, H. J. 2001High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-beta 1Kidney Int.5916951705PubMedCrossRefGoogle Scholar
  24. 24.
    Moller, J. V., Sheikh, M. I. 1982Renal organic anion transport system: pharmacological, physiological, and biochemical aspectsPharmacol. Rev.34315358PubMedGoogle Scholar
  25. 25.
    Brown, G. R. 1993Cephalosporin–probenecid drug interactionsClin. Pharmacokinet.24289300PubMedGoogle Scholar
  26. 26.
    Ishikawa, T., Tsuji, A., Inui, K., Sai, Y., Anzai, N., Wada, M., Endou, H., Sumino, Y. 2004The genetic polymorphism of drug transporters: functional analysis approachesPharmacogenomics56799PubMedCrossRefGoogle Scholar
  27. 27.
    Marzolini, C., Tirona, R. G., Kim, R. B. 2004Pharmacogenomics of the OATP and OAT familiesPharmacogenomics5273282PubMedCrossRefGoogle Scholar
  28. 28.
    Nishizato, Y., Ieiri, I., Suzuki, H., Kimura, M., Kawabata, K., Hirota, T., Takane, H., Irie, S., Kusuhara, H., Urasaki, Y., Urae, A., Higuchi, S., Otsubo, K., Sugiyama, Y. 2003Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokineticsClin. Pharmacol. Ther.73554565PubMedCrossRefGoogle Scholar
  29. 29.
    Niemi, M., Schaeffeler, E., Lang, T., Fromm, M. F., Neuvonen, M., Kyrklund, C., Backman, J. T., Kerb, R., Schwab, M., Neuvonen, P. J., Eichelbaum, M., Kivisto, K. T. 2004High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1)Pharmacogenetics14429440PubMedGoogle Scholar
  30. 30.
    Cha, S. H., Sekine, T., Fukushima, J. I., Kanai, Y., Kobayashi, Y., Goya, T., Endo, H. 2001Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidneyMol. Pharmacol.5912771286PubMedGoogle Scholar
  31. 31.
    Motohashi, H., Uwai, Y., Hiramoto, K., Okuda, M., Inui, K. 2004Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A)Eur. J. Pharmacol.5032530PubMedCrossRefGoogle Scholar
  32. 32.
    Uwai, Y., Taniguchi, R., Motohashi, H., Saito, H., Okuda, M., Inui, K. 2004Methotrexate–loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3Drug Metab. Pharmacokinet.19369374PubMedCrossRefGoogle Scholar
  33. 33.
    Takeda, M., Khamdang, S., Narikawa, S., Kimura, H., Kobayashi, Y., Yamamoto, T., Cha, S. H., Sekine, T., Endou, H. 2002Human organic anion transporters and human organic cation transporters mediate renal antiviral transportJ. Pharmacol. Exp. Ther.300918924PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yuji Sakurai
    • 1
  • Hideyuki Motohashi
    • 1
  • Ken Ogasawara
    • 1
  • Tomohiro Terada
    • 1
  • Satohiro Masuda
    • 1
  • Toshiya Katsura
    • 1
  • Noriko Mori
    • 2
  • Motokazu Matsuura
    • 3
  • Toshio Doi
    • 3
  • Atsushi Fukatsu
    • 4
  • Ken-ichi Inui
    • 1
  1. 1.Department of Pharmacy, Kyoto University Hospital, Faculty of MedicineKyoto UniversitySakyo-kuJapan
  2. 2.Department of NephrologyShizuoka Prefectural HospitalShizuokaJapan
  3. 3.Department of Clinical Biology and Medicine, Course of Biological Medicine, School of MedicineUniversity of TokushimaTokushimaJapan
  4. 4.Division of Artificial Kidneys, Kyoto University Hospital, Faculty of MedicineKyoto UniversityKyotoJapan

Personalised recommendations