Skip to main content

Advertisement

Log in

Quantitative Structure–Activity Relationship and Quantitative Structure–Pharmacokinetics Relationship of 1,4-Dihydropyridines and Pyridines as Multidrug Resistance Modulators

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of this study was to develop quantitative structure–activity/pharmacokinetic relationships (QSAR/QSPKR) for a series of synthesized 1,4-dihydropyridines (DHPs) and pyridines as P-glycoprotein (P-gp) inhibitors.

Methods

Molecular descriptors of test compounds were generated by 3D molecular modeling using SYBYL and KowWin programs. Forward inclusion coupled with multiple linear regression (MLR) was used to derive a QSAR equation for Ca2+ channel binding. A multivariate statistical technique, partial least square (PLS) regression, was applied to derive a QSAR model for P-gp inhibition and QSPKR models. Cross-validation using the “leave-one-out” method was performed to evaluate the predictive performance of models.

Results

For Ca2+ channel binding, the MLR equation indicated a good correlation between observed and predicted values (R2 = 0.90), and cross-validation confirmed the predictive ability of the model (Q2 = 0.67). For P-gp reversal, the model obtained by PLS could account for most of the variation in P-gp inhibition (R2 = 0.76) with fair predictive performance (Q2 = 0.62). Nine structurally related 1,4-DHP drugs were used for QSPKR analysis. The models could explain the majority of the variation in clearance (R2 = 0.90), and cross-validation confirmed the prediction ability (Q2 = 0.69).

Conclusion

QSAR/QSPKR models were developed, and the QSAR models were capable of identifying synthesized 1,4-DHPs and pyridines with potent P-gp inhibition and reduced Ca2+ channel binding. The QSPKR models provide insight into the contribution of electronic, steric, and lipophilic factors to the clearance of DHPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1,4-DHPs:

1,4-dihydropyridines

CL:

clearance

COAR:

Connolly surface area

COCO:

core–core repulsion

COVO:

Connolly surface volume

DNM:

daunomycin

ELEN:

electronic energy

FILE:

filled levels

HEFO:

heat of formation

HOMO:

energy of the highest occupied molecular orbital

IOPO:

ionization potentials

LUMO:

energy of the lowest unoccupied molecular orbital

MDR:

multidrug resistance

MLR:

multiple linear regression

MW:

molecular weight

P-gp:

P-glycoprotein

PLS:

partial least square

PSA:

polar surface area

QSAR:

quantitative structure–activity relationship

QSPKR:

quantitative structure–pharmacokinetic relationship

TOEN:

total energy of the molecule

V:

apparent volume of distribution

VBL:

vinblastine

References

  1. P. Borst R. Evers M. Kool J. Wijnholds (2000) ArticleTitleA family of drug transporters: the multidrug resistance-associated proteins J. Natl. Cancer Inst. 92 1295–1302 Occurrence Handle10944550 Occurrence Handle10.1093/jnci/92.16.1295 Occurrence Handle1:CAS:528:DC%2BD3cXmtlektr8%3D

    Article  PubMed  CAS  Google Scholar 

  2. D. R. Ferry M. A. Russell M. H. Cullen (1992) ArticleTitleP-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is allosterically coupled to a vinca-alkaloid-selective binding site Biochem. Biophys. Res. Commun. 188 440–445 Occurrence Handle1358068 Occurrence Handle10.1016/0006-291X(92)92404-L Occurrence Handle1:CAS:528:DyaK38Xmt1Gqsr4%3D

    Article  PubMed  CAS  Google Scholar 

  3. G. A. Fisher B. L. Lum B. I. Sikic (1995) ArticleTitleThe reversal of multidrug resistance Cancer Treat. Res. 78 45–70 Occurrence Handle8595147 Occurrence Handle1:CAS:528:DyaK28XislOjsLw%3D

    PubMed  CAS  Google Scholar 

  4. G. A. Fisherand B. I. Sikic (1995) ArticleTitleDrug resistance in clinical oncology and hematology. Introduction Hematol./Oncol. Clin. North Am. 9 xi–xii

    Google Scholar 

  5. S. Ekins R. B. Kim B. F. Leake A. H. Dantzig E. G. Schuetz L. B. Lan K. Yasuda R. L. Shepard M. A. Winter J. D. Schuetz J. H. Wikel S. A. Wrighton (2002) ArticleTitleThree-dimensional quantitative structure–activity relationships of inhibitors of P-glycoprotein Mol. Pharmacol. 61 964–973 Occurrence Handle11961113 Occurrence Handle1:CAS:528:DC%2BD38XjtlGltb4%3D

    PubMed  CAS  Google Scholar 

  6. I. Pajeva M. Wiese (1998) ArticleTitleMolecular modeling of phenothiazines and related drugs as multidrug resistance modifiers: a comparative molecular field analysis study J. Med. Chem. 41 1815–1826 Occurrence Handle9599232 Occurrence Handle10.1021/jm970786k Occurrence Handle1:CAS:528:DyaK1cXis12qu7k%3D

    Article  PubMed  CAS  Google Scholar 

  7. P. H. Graaf ParticleVan der J. Nilsson E. A. Schaick ParticleVan M. Danhof (1999) ArticleTitleMultivariate quantitative structure–pharmacokinetic relationships (QSPKR) analysis of adenosine A1 receptor agonists in rat J. Pharm. Sci. 88 306–312 Occurrence Handle10052988

    PubMed  Google Scholar 

  8. X. F. Zhou L. Zhang E. Tseng E. A. Scott-Ramsay J. J. Schentag R. A. Coburn M. E. Morris (2004) ArticleTitleNew 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors Drug Metab. Dispos. 33 321–328 Occurrence Handle15585608 Occurrence Handle10.1124/dmd.104.002089

    Article  PubMed  Google Scholar 

  9. R. Peri (1998) Regulation of L-Type Calcium Channels in Pituitary GH4C1 Cells by Membrane Depolarization and 1,4-Dihydropyridines State University of New York at Buffalo Buffalo, NY

    Google Scholar 

  10. D. R. Abernethy J. B. Schwartz (1988) ArticleTitlePharmacokinetics of calcium antagonists under development Clin. Pharmacokinet. 15 1–14 Occurrence Handle3042243 Occurrence Handle1:CAS:528:DyaL1cXlt1Wrt78%3D

    PubMed  CAS  Google Scholar 

  11. L. Goedhals W. R. Bezwoda R. P. Abratt F. Rathgeb K. J. Goebel W. Wurst (1995) ArticleTitleBioavailability and pharmacokinetic characteristics of dexniguldipine–HCl, a new anticancer drug Int. J. Clin. Pharmacol. Ther. 33 664–669 Occurrence Handle8963484 Occurrence Handle1:CAS:528:DyaK28XltFCgsw%3D%3D

    PubMed  CAS  Google Scholar 

  12. D. E. Mager W. J. Jusko (2002) ArticleTitleQuantitative structure–pharmacokinetic/pharmacodynamic relationships of corticosteroids in man J. Pharm. Sci. 91 2441–2451 Occurrence Handle12379930 Occurrence Handle10.1002/jps.10231 Occurrence Handle1:CAS:528:DC%2BD38XosF2htbY%3D

    Article  PubMed  CAS  Google Scholar 

  13. R. Tobias (1997) An Introduction to Partial Least Square SAS Institute Inc. Cary, NC

    Google Scholar 

  14. W. M. Meylan P. H. Howard (1995) ArticleTitleAtom/fragment contribution method for estimating octanol–water partition coefficients J. Pharm. Sci. 84 83–92 Occurrence Handle7714751 Occurrence Handle1:CAS:528:DyaK2MXis1Cmu7w%3D

    PubMed  CAS  Google Scholar 

  15. P. Geladi B. Kowalski (1986) ArticleTitlePartial least square regression: a tutorial Anal. Chim. Acta 185 1–17 Occurrence Handle1:CAS:528:DyaL28XmtVahs7c%3D

    CAS  Google Scholar 

  16. L. Eriksson E. Johansson (1996) ArticleTitleMultivariate design and modeling in QSAR—tutorial Chemometr. Intell. Lab. Syst. 34 1–19 Occurrence Handle1:CAS:528:DyaK28XkvFGgsrk%3D

    CAS  Google Scholar 

  17. M. Mahmoudian W. G. Richards (1986) ArticleTitleQSAR of binding of dihydropyridine-type calcium antagonists to their receptor on ileal smooth muscle preparations J. Pharm. Pharmacol. 38 272–276 Occurrence Handle2872290 Occurrence Handle1:CAS:528:DyaL28XktlGitrs%3D

    PubMed  CAS  Google Scholar 

  18. R. A. Coburn M. Wierzba M. J. Suto A. J. Solo A. M. Triggle D. J. Triggle (1988) ArticleTitle1,4-Dihydropyridine antagonist activities at the calcium channel: a quantitative structure–activity relationship approach J. Med. Chem. 31 2103–2107 Occurrence Handle2846838 Occurrence Handle10.1021/jm00119a009 Occurrence Handle1:CAS:528:DyaL1cXls1aqs74%3D

    Article  PubMed  CAS  Google Scholar 

  19. V. N. Viswanadhan G. A. Mueller S. C. Basak J. N. Weinstein (2001) ArticleTitleComparison of a neural net-based QSAR algorithm (PCANN) with hologram- and multiple linear regression-based QSAR approaches: application to 1,4-dihydropyridine-based calcium channel antagonists J. Chem. Inf. Comput. Sci. 41 505–511 Occurrence Handle11410024 Occurrence Handle10.1021/ci000072+ Occurrence Handle1:CAS:528:DC%2BD3MXislKhsr0%3D

    Article  PubMed  CAS  Google Scholar 

  20. T. Clark (1985) A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure and Energy Calculations Wiley New York, NY

    Google Scholar 

  21. K. Fujimura A. Ota Y. Kawashima (1996) ArticleTitleQuantitative structure–activity relationships of Ca(2+)-antagonistic semotiadil congeners Chem. Pharm. Bull. (Tokyo) 44 542–546 Occurrence Handle1:CAS:528:DyaK28XhvFSjurw%3D

    CAS  Google Scholar 

  22. W. A. Catterall M. J. Seagar M. Takahashi K. Nunoki (1989) Molecular properties of dihydropyridines-sensitive calcium channels D. W. Wray R. I. Norman P. Hess (Eds) Calcium Channels, Vol. 560 Annals of the New York Academy of Sciences New York 1–14

    Google Scholar 

  23. K. Palm P. Stenberg K. Luthman P. Artursson (1997) ArticleTitlePolar molecular surface properties predict the intestinal absorption of drugs in humans Pharm. Res. 14 568–571 Occurrence Handle9165525 Occurrence Handle10.1023/A:1012188625088 Occurrence Handle1:CAS:528:DyaK2sXjtlSksrk%3D

    Article  PubMed  CAS  Google Scholar 

  24. D. F. Veber S. R. Johnson H. Y. Cheng B. R. Smith K. W. Ward K. D. Kopple (2002) ArticleTitleMolecular properties that influence the oral bioavailability of drug candidates J. Med. Chem. 45 2615–2623 Occurrence Handle12036371 Occurrence Handle10.1021/jm020017n Occurrence Handle1:CAS:528:DC%2BD38XjsFCmt7g%3D

    Article  PubMed  CAS  Google Scholar 

  25. P. Chiba W. Holzer M. Landau G. Bechmann K. Lorenz B. Plagens M. Hitzler E. Richter G. Ecker (1998) ArticleTitleSubstituted 4-acylpyrazoles and 4-acylpyrazolones: synthesis and multidrug resistance-modulating activity J. Med. Chem. 41 4001–4011 Occurrence Handle9767638 Occurrence Handle10.1021/jm980121y Occurrence Handle1:CAS:528:DyaK1cXlvFGitrg%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Linping Zhang for synthesis of the 1,4-dihydropyridines and pyridines. Supported in part by a grant from the Kapoor Charitable Foundation (SUNY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn E. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, XF., Shao, Q., Coburn, R.A. et al. Quantitative Structure–Activity Relationship and Quantitative Structure–Pharmacokinetics Relationship of 1,4-Dihydropyridines and Pyridines as Multidrug Resistance Modulators. Pharm Res 22, 1989–1996 (2005). https://doi.org/10.1007/s11095-005-8112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-8112-0

Key Words

Navigation