Pharmaceutical Research

, Volume 22, Issue 10, pp 1685–1691 | Cite as

In Vivo Human MCP-1 Transfection in Porcine Arteries by Intravascular Electroporation

  • Randolph W. Seidler
  • Susanne Allgäuer
  • Susanne Ailinger
  • Andreas Sterner
  • Nagendu Dev
  • Dietmar Rabussay
  • Henri Doods
  • Martin C. Lenter
Research Paper


The purpose of this study was to develop a nonviral gene transfer method for therapeutic delivery of the human monocyte chemoattractant protein-1 (MCP-1) in patients with peripheral artery disease, using local catheter-mediated electrotransfer of naked plasmid DNA into arteries.


Arterial walls of the A. profunda femoris of pigs were transfected either with a human MCP-1 or with a firefly luciferase-encoding DNA construct. The efficacy of electrotransfer of DNA was analyzed after 2 days by quantitative polymerase chain reaction (PCR) or luciferase activity measurements. To optimize MCP-1 gene transfer conditions, a voltage range of 60–150 V was applied as a train of six square pulses of 20 ms each at 1 Hz and was combined with a dose of 150 μg DNA. Subsequently, the optimized voltage was used to test a dose range of 80–300 μg DNA.


The voltage optimum for arterial transfection was observed at 80 volts. Using this setting, the dose application of 300 μg MCP-1 plasmid DNA (the maximal dose tested) demonstrated the highest MCP-1 expression signal. The electric pulses and the transfer and expression of human MCP-1 per se did not induce endogenous porcine MCP-1 expression in treated arteries. Interestingly, angioplastic predilation of the artery before gene transfer, which had originally been postulated to enhance transfection by improving access of the plasmid to subendothelial cell layers, resulted in an attenuated transfection efficacy.


The present study demonstrates that transluminal catheter-based electroporation provides an efficient technology for nonviral intravascular gene transfer by just applying unformulated DNA.

Key Words

arteriogenesis electroporation catheter MCP-1 naked DNA pigs vascular gene therapy 


EP catheter

electroporation catheter




glycerolaldehyde-3-phosphate dehydrogenase






relative light units





The expert technical assistance of Dunja Nitz is gratefully acknowledged. We thank Dr. Markus Wolfram for his support preparing the manuscript. Dr. Barbara Enenkel is acknowledged for design and preparation of the reporter gene vector.


  1. 1.
    Diehm, C., Schuster, A., Allenberg, J. R., Darius, H., Haberl, R., Lange, S., Pittrow, D., Stritzky, B., Tepohl, G., Trampisch, H. J. 2004High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional studyAtherosclerosis17295105CrossRefPubMedGoogle Scholar
  2. 2.
    Hirsch, A. T., Criqui, M. H., Treat-Jacobson, D., Regensteiner, J. G., Creager, M. A., Olin, J. W., Krook, S. H., Hunninghake, D. B., Comerota, A. J., Walsh, M. E., McDermott, M. M., Hiatt, W. R. 2001Peripheral arterial disease detection, awareness, and treatment in primary careJAMA28613171324CrossRefPubMedGoogle Scholar
  3. 3.
    Meijer, W. T., Hoes, A. W., Rutgers, D., Bots, M. L., Hofman, A., Grobbee, D. E. 1998Peripheral arterial disease in the elderly: The Rotterdam StudyArterioscler. Thromb. Vasc. Biol.18185192PubMedGoogle Scholar
  4. 4.
    Stoffers, H. E., Rinkens, P. E., Kester, A. D., Kaiser, V., Knottnerus, J. A. 1996The prevalence of asymptomatic and unrecognized peripheral arterial occlusive diseaseInt. J. Epidemiol.25282290PubMedGoogle Scholar
  5. 5.
    Hiatt, W. R. 2002Pharmacologic therapy for peripheral arterial disease and claudicationJ. Vasc. Surg.3612831291CrossRefPubMedGoogle Scholar
  6. 6.
    Regensteiner, J. G., Hiatt, W. R. 2002Current medical therapies for patients with peripheral arterial disease: a critical reviewAm. J. Med.1124957CrossRefPubMedGoogle Scholar
  7. 7.
    Shyy, Y. J., Hsieh, H. J., Usami, S., Chien, S. 1994Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endotheliumProc. Natl. Acad. Sci. USA9146784682PubMedGoogle Scholar
  8. 8.
    Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., Schaper, W. 1998Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimbJ. Clin. Invest.1014050PubMedGoogle Scholar
  9. 9.
    Polverini, P. J., Cotran, P. S., Gimbrone, M. A.,Jr., Unanue, E. R. 1977Activated macrophages induce vascular proliferationNature269804806CrossRefPubMedGoogle Scholar
  10. 10.
    Ito, W. D., Arras, M., Winkler, B., Scholz, D., Schaper, J., Schaper, W. 1997Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusionCirc. Res.80829837PubMedGoogle Scholar
  11. 11.
    Deindl, E., Buschmann, I., Hoefer, I. E., Podzuweit, T., Boengler, K., Vogel, S., Royen, N., Fernandez, B., Schaper, W. 2001Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbitCirc. Res.89779786PubMedGoogle Scholar
  12. 12.
    Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., Kosaki, A., Shintani, S., Murohara, T., Imaizumi, T., Iwasaka, T. 2001Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokinesCirculation10410461052PubMedGoogle Scholar
  13. 13.
    White, F. C., Carroll, S. M., Magnet, A., Bloor, C. M. 1992Coronary collateral development in swine after coronary artery occlusionCirc. Res.7114901500PubMedGoogle Scholar
  14. 14.
    Hoefer, I. E., Royen, N., Buschmann, I. R., Piek, J. J., Schaper, W. 2001Time course of arteriogenesis following femoral artery occlusion in the rabbitCardiovasc. Res.49609617CrossRefPubMedGoogle Scholar
  15. 15.
    Voskuil, M., Royen, N., Hoefer, I. E., Seidler, R., Guth, B. D., Bode, C., Schaper, W., Piek, J. J., Buschmann, I. R. 2003Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1Am. J. Physiol., Heart Circ. Physiol.284H1422H1428Google Scholar
  16. 16.
    Azrin, M. A., Mitchel, J. F., Fram, D. B., Pedersen, C. A., Cartun, R. W., Barry, J. J., Bow, L. M., Waters, D. D., McKay, R. G. 1994Decreased platelet deposition and smooth muscle cell proliferation after intramural heparin delivery with hydrogel-coated balloonsCirculation90433441PubMedGoogle Scholar
  17. 17.
    Wolinsky, H., Lin, C. S. 1991Use of the perforated balloon catheter to infuse marker substances into diseased coronary artery walls after experimental postmortem angioplastyJ. Am. Coll. Cardiol.17174B178BPubMedGoogle Scholar
  18. 18.
    Consigny, P. M., Barry, J. J., Vitali, N. J. 1994Local delivery of an antiproliferative drug with use of hydrogel-coated angioplasty balloonsJ. Vasc. Interv. Radiol.5553560PubMedGoogle Scholar
  19. 19.
    Riessen, R., Isner, J. M. 1994Prospects for site-specific delivery of pharmacologic and molecular therapiesJ. Am. Coll. Cardiol.2312341244PubMedGoogle Scholar
  20. 20.
    S. M. Schwartz. Restenosis Summit VII. Cleveland, OH, pp. 290–294Google Scholar
  21. 21.
    Rabussay, D., Dev, N. B., Fewell, J., Smith, L. C., Widera, G., Zhang, L. 2003Enhancement of therapeutic drug and DNA delivery into cells by electroporationJ. Phys., D, Appl. Phys.36348363Google Scholar
  22. 22.
    Dev, N. B., Joseph, M., Rabussay, D. 2002Efficient in vivo transgene expression in the vascular wall driven by endovascular electroporationMol. Ther.5S240Google Scholar
  23. 23.
    Wu, J. C., Inubushi, M., Sundaresan, G., Schelbert, H. R., Gambhir, S. S. 2002Optical imaging of cardiac reporter gene expression in living ratsCirculation10516311634CrossRefPubMedGoogle Scholar
  24. 24.
    Muhs, A., Lenter, M. C., Seidler, R. W., Zweigerdt, R., Kirchengast, M., Weser, R., Ruediger, M., Guth, B. 2004Nonviral monocyte chemoattractant protein-1 gene transfer improves arteriogenesis after femoral artery occlusionGene Ther.1116851693CrossRefPubMedGoogle Scholar
  25. 25.
    Thomas, C. E., Ehrhardt, A., Kay, M. A. 2003Progress and problems with the use of viral vectors for gene therapyNat. Rev. Genet.4346358CrossRefPubMedGoogle Scholar
  26. 26.
    Liu, Q., Muruve, D. A. 2003Molecular basis of the inflammatory response to adenovirus vectorsGene Ther.10935940CrossRefPubMedGoogle Scholar
  27. 27.
    Audouy, S. A., Leij, L. F., Hoekstra, D., Molema, G. 2002In vivo characteristics of cationic liposomes as delivery vectors for gene therapyPharm. Res.1915991605CrossRefPubMedGoogle Scholar
  28. 28.
    Cui, J., Robinson, K. A., Brown, J. E., Chronos, N. A. F., Cipolla, G. D., Dev, N. B., Hofmann, G., Crowford, N., King, S. B. 1997Local drug delivery to pig carotid arteries by direct vessel wall electroporation using novel catheterJ. Am. Coll. Cardiol.29749Google Scholar
  29. 29.
    Matsumoto, T., Komori, K., Shoji, T., Kuma, S., Kume, M., Yamaoka, T., Mori, E., Furuyama, T., Yonemitsu, Y., Sugimachi, K. 2001Successful and optimized in vivo gene transfer to rabbit carotid artery mediated by electronic pulseGene Ther.811741179CrossRefPubMedGoogle Scholar
  30. 30.
    Wempe, F., Lindner, V., Augustin, H. G. 1997Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cellsArterioscler. Thromb. Vasc. Biol.1724712478PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Randolph W. Seidler
    • 1
  • Susanne Allgäuer
    • 2
  • Susanne Ailinger
    • 2
  • Andreas Sterner
    • 2
  • Nagendu Dev
    • 3
  • Dietmar Rabussay
    • 3
  • Henri Doods
    • 2
  • Martin C. Lenter
    • 2
  1. 1.Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldUSA
  2. 2.Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
  3. 3.Genetronics Inc.San DiegoUSA

Personalised recommendations