Skip to main content
Log in

Characterization of Drug Particle Surface Energetics and Young’s Modulus by Atomic Force Microscopy and Inverse Gas Chromatography

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Particulate interactions are dominated by aspects such as surface topography, exposed chemical moieties, environmental conditions, and thermodynamic properties such as surface free energy (γ). The absolute value and relative magnitude of surface energies of a drug and excipients within a formulation can significantly influence manufacture, processing, and use. This study utilizes and compares the potentially complementary analytical techniques of atomic force microscopy (AFM) and inverse gas chromatography (IGC) in the quantitative determination of the surface energy of drug (budesonide) particles (micronized and unmilled) relevant to inhaled delivery. In addition, the study investigates with AFM another important parameter in determining material interactions, the local mechanical properties of the drug.

Methods

AFM was used to acquire force of adhesion (Fadh) and related work of adhesion (WA) and surface energy values between individual mironized drug particles and also model substrates (graphite and mica). In addition, AFM probes were used to interrogate the surface energy of unmilled drug particles. Measurement with AFM probes also yielded localized measurements of Young’s modulus for the unmilled drug. IGC was also used to probe the surface characteristics of the bulk drug material.

Results

The average values for surface energies acquired from budesonide micronized particle interactions with graphite, mica, and drug particles of the same substance were found to range from 35 to 175, 5 to 40, and 10 to 32 mJ m−2, respectively. The unmilled material displayed a range of values of 39–88 mJ m−2 with an average of 60 mJ m−2. The IGC result for the surface energy of the micronized material was 68.47 ± 1.60 mJ m−2. The variability in surface energy from AFM, a feature particularly apparent for the micronized material was attributed to two factors, intrinsic material variations within a single particle and assumptions present within the contact mechanics model used. Here we provide a detailed description of these factors to go some way to rationalize the results. The Young’s modulus of the unmilled drug was determined to be approximately 10 GPa.

Conlusion

The range of determined surface energies between the AFM measurement on graphite, mica, and the drug is proposed to reflect the different chemistries displayed by the drug at the single particle level. The maximum values of these ranges can be related to the sites most likely to be involved in adhesion. AFM and IGC yield surface energy estimates in approximate agreement, but clearly are interrogating surfaces in different fashions. This raises questions as to the nature of the measurement being made by these approaches and to the most appropriate time to use these methods in terms of a direct relation to formulation design, manufacture, and drug delivery. Finally, we demonstrate a novel method for assessing the Young’s modulus of a drug from a single particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Prime P. J. Atkins A. Slater B. Sumby (1997) ArticleTitleReview of dry powder inhalers Adv. Drug Deliv. Rev. 26 51–58

    Google Scholar 

  2. M. E. Aulton (1996) Pharmaceutics—The Science of dosage Form Design Churchill Livingstone New York

    Google Scholar 

  3. E. R. Beach G. W. Tormoen J. Drelich R. Han (2002) ArticleTitlePull-off force measurements between rough surfaces by atomic force microscopy J. Colloid Interface Sci. 247 84–99

    Google Scholar 

  4. F. Podczeck J. M. Newton M. B. James (1994) ArticleTitleAssessment of adhesion and autoadhesion forces between particles and surfaces: I. The investigation of autoadhesion phenomena of salmeterol xinafoate and lactose monohydrate particles using compacted powder surfaces J. Adhes. Sci. Technol. 8 IssueID12 1459–1472

    Google Scholar 

  5. P. M. Young R. Price M. J. Tobyn M. Buttrum F. Dey (2003) ArticleTitleInvestigation into the effect of humidity on drug–drug interactions using the atomic force microscope J. Pharm. Sci. 92 815–822

    Google Scholar 

  6. M. Götzinger W. Peukert (2003) ArticleTitleDispersive forces of particle–surface interactions: direct AFM measurements and modelling Powder Technol. 130 102–109

    Google Scholar 

  7. J. K. Eve N. Patel S. Y. Luk S. J. Ebbens C. J. Roberts (2002) ArticleTitleA study of single drug particle adhesion interactions using atomic force microscopy Int. J. Pharm. 238 17–27

    Google Scholar 

  8. K. K. Lam J. M. Newton (1992) ArticleTitleEffect of temperature on particulate solid adhesion to a substrate surface Powder Technol 73 117–125

    Google Scholar 

  9. G. Binnig C. F. Quate C. Gerber (1986) ArticleTitleAtomic force microscope Phys. Rev. Lett. 56 930–933

    Google Scholar 

  10. M. D. Louey P. Mulvaney P. J. Stewart (2001) ArticleTitleCharacterisation of adhesional properties of lactose carriers using atomic force microscopy J. Pharm. Biomed. Anal. 25 559–567

    Google Scholar 

  11. V. Bėrard E. Lesniewska C. Andrės D. Pertuy C. Laroche Y. Pourcelot (2002) ArticleTitleDry powder inhaler: Influence of humidity on topology and adhesion studied by AFM Int. J. Pharm. 232 213–224

    Google Scholar 

  12. T. Eastman D. Zhu (1996) ArticleTitleAdhesion forces between surface-modified AFM tips and a mica surface Langmuir 12 2859–2862

    Google Scholar 

  13. D. L. Sedin K. L. Rowlen (2000) ArticleTitleAdhesion forces measured by atomic force microscopy in humid air Anal. Chem. 72 2183–2189

    Google Scholar 

  14. M. Binggeli C. M. Mate (1994) ArticleTitleInfluence of capillary condensation of water on nanotribology studied by force microscopy Appl. Phys. Lett. 65 415–417

    Google Scholar 

  15. W. A. Ducker T. J. Senden (1992) ArticleTitleMeasurement of forces in liquids using a force microscope Langmuir 8 1831–1836

    Google Scholar 

  16. C. Vervaet P. R. Byron (1999) ArticleTitleDrug–surfactant–propellant interactions in HFA formulations Int. J. Pharm. 186 13–30

    Google Scholar 

  17. H. J. Butt (1991) ArticleTitleMeasuring electrostatic, Van der Waals and hydration forces in electrolyte solutions with an atomic force microscope Biophys. J. 60 1438–1444

    Google Scholar 

  18. U. Sindel I. Zimmermann (2001) ArticleTitleMeasurement of interaction forces between individual powder particles using an atomic force microscope Powder Technol. 117 247–254

    Google Scholar 

  19. A. Relini S. Sottini S. Zuccotti M. Bolognesi A. Gliozzi R. Rolandi (2003) ArticleTitleMeasurement of the surface free energy of streptavidin crystals by atomic force microscopy Langmuir 19 2908–2912

    Google Scholar 

  20. L. Zajic G. Buckton (1990) ArticleTitleThe use of surface energy values to predict optimum binder selection for granulations Int. J. Pharm. 59 155–164

    Google Scholar 

  21. D. E. Packman (2003) ArticleTitleSurface energy, surface topography and adhesion Int. J. Adhes. Adhes. 23 437–448

    Google Scholar 

  22. K. Kendall C. Stainton (2001) ArticleTitleAdhesion and aggregation of fine particles Powder Technol. 121 223–229

    Google Scholar 

  23. O. Planinšek A. Trojak S. Srčič (2001) ArticleTitleThe dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements Int. J. Pharm. 221 211–217

    Google Scholar 

  24. G. Buckton J. M. Newton (1985) ArticleTitleAssessment of the wettability and surface energy of a pharmaceutical powder by liquid penetration J. Pharm. Pharmacol. 37 605–609

    Google Scholar 

  25. S. Gaisford G. Buckton (2001) ArticleTitlePotential applications of microcalorimetry for the study of physical processes in pharmaceuticals Thermochim. Acta 380 185–198

    Google Scholar 

  26. M. A. Phipps L. A. Mackin (2000) ArticleTitleApplication of isothermal microcalorimetry in solid state drug development PSTT 3 9–17

    Google Scholar 

  27. C. Sun J. C. Berg (2003) ArticleTitleThe effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution J. Colloid Interface Sci. 260 443–448

    Google Scholar 

  28. D. S. Keller P. Luner (2000) ArticleTitleSurface energetics of calcium carbonates using inverse gas chromatography Colloids Surf. A: Physicochem. Eng. Asp. 161 401–415

    Google Scholar 

  29. F. Podczeck (1998) Particle–Particle Adhesion in Pharmaceutical Powder Handling Imperial College Press London

    Google Scholar 

  30. J. C. Feeley P. York B. S. Sumby H. Dicks (2002) ArticleTitleProcessing effects on the surface properties of α-lactose monohydrate assessed by inverse gas chromatography (IGC) J. Mater. Sci. 37 217–222

    Google Scholar 

  31. I. M. Grimsey J. C. Feeley P. York (2002) ArticleTitleAnalysis of the surface energy of pharmaceutical powders by inverse gas chromatography J. Pharm. Sci. 92 571–583

    Google Scholar 

  32. M. D. Ticehurst P. York R. C. Rowe S. K. Dwivedi (1996) ArticleTitleCharacterisation of the surface properties of α-lactose monohydrate with inverse gas chromatography, used to detect batch variation Int. J. Pharm. 141 93–99

    Google Scholar 

  33. J. C. Feeley P. York B. S. Sumby H. Dicks (1998) ArticleTitleDetermination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisation Int. J. Pharm. 172 89–96

    Google Scholar 

  34. N. M. Ahfat G. Buckton R. Burrows M. D. Ticehurst (2000) ArticleTitleAn exploration of inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging data Eur. J. Pharm. Sci. 9 271–276

    Google Scholar 

  35. B. C. Hancock S.-D. Clas K. Christensen (2000) ArticleTitleMicro-scale measurement of the mechanical properties of compressed pharmaceutical powders: 1. The elasticity and fracture behaviour of microcrystalline cellulose Int. J. Pharm. 209 27–35

    Google Scholar 

  36. C. Rotsch M. Radmacher (2000) ArticleTitleDrug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study Biophys. J. 78 520–535

    Google Scholar 

  37. S. C. Lieber N. Aubry J. Pain G. Diaz S. J. Kim S. F. Vatner (2004) ArticleTitleAging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation Am. J. Physiol, Heart Circ. Physiol. 287 H645–H651

    Google Scholar 

  38. X. M. Liang G. Z. Mao K. Y. S. Ng (2004) ArticleTitleMechanical properties and stability measurement of cholesterol-containing liposome onmica by atomic force microscopy J. Colloid Interface Sci. 278 53–62

    Google Scholar 

  39. G. V. Lubarsky M. R. Davidson R. H. Bradley (2004) ArticleTitleElastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS Surf. Sci. 558 135–144

    Google Scholar 

  40. Y. M. Soifer A. Verdyan (2003) ArticleTitleInvestigation of the local mechanical properties of potassium chloride single crystals by atomic force microscopy Phys. Solid State 45 1701–1705

    Google Scholar 

  41. J. Albertsson Á. Oskarsson C. Svensson (1978) ArticleTitleX-ray study of budesonide: molecular structures and solid solutions of the (22S) and (22R) epimers of 11β,21-dihydroxy-16α,17α-propylmethylenedioxy-1,4-pregnadiene-3,20-dione Acta Crystallogr., B 34 3027–3036

    Google Scholar 

  42. J. L. Hutter J. Bechhoefer (1993) ArticleTitleCalibration of atomic-force microscope tips Rev. Sci. Instrum. 64 1868–1873

    Google Scholar 

  43. J. C. Hooten C. S. German S. Allen M. C. Davies C. J. Roberts S. J. B. Tendler P. M. Williams (2003) ArticleTitleCharacterization of particle-interactions by atomic force microscopy: effect of contact area Pharm. Res. 20 508–514

    Google Scholar 

  44. P. M. Williams K. M. Shakesheff M. C. Davies D. E. Jackson C. J. Roberts S. J. B. Tendler (1996) ArticleTitleBlind reconstruction ofscanning probe image data J. Vac. Sci. Technol., B 14 1557–1562

    Google Scholar 

  45. P. M. Williams M. C. Davies C. J. Roberts S. J. B. Tendler (1998) ArticleTitleNoise-compliant tip-shape derivation Appl. Phys., A 66 S911–S914

    Google Scholar 

  46. D. M. Schaefer M. Carpenter B. Gady R. Reifenberger L. P. Demejo D. S. Rimai (1995) ArticleTitleSurface roughness and its influence on particle adhesion using atomic force techniques J. Adhes. Sci. Technol. 9 1049–1062

    Google Scholar 

  47. J. N. Israelachvili (1991) Intermolecular and Surface Forces EditionNumber2nd ed. Academic Press San Diego

    Google Scholar 

  48. C. Plassard E. Lesniewska I. Pochard A. Nonat (2004) ArticleTitleInvestigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale Ultramicroscopy 100 331–338

    Google Scholar 

  49. J. Schultz L. Lavielle (1989) Interfacial properties of carbon fibre–epoxy matrix composites D. R. Lloyd T. C. Ward H. P. Schreiber (Eds) Inverse Gas Chromatography Characterisation of Polymers and other Materials; ACS Symp. Ser. 391 American Chemical Society Washington, DC 185–202

    Google Scholar 

  50. K. L. Johnson K. Kendall A. D. Roberts (1971) ArticleTitleSurface energy and the contact of elastic solids Proc. R. Soc. Lond., A 324 301–313

    Google Scholar 

  51. E. R. Beach G. W. Tormoen J. Drelich (2002) ArticleTitlePull-off forces measured between hexadecanethiol self-assembled monolayers in air using an atomic force microscope: analysis of surface free energy J. Adhes. Sci. Technol. 16 845–868

    Google Scholar 

  52. S. G. Barlow D. A. Manning (1999) ArticleTitleInfluence of time and temperature in reactions and transformations of muscovite mica Br. Ceram. Trans. 98 122–126

    Google Scholar 

  53. R. J. Roberts R. C. Rowe P. York (1991) ArticleTitleThe relationship between Young’s modulus of elasticity of organic solids and their molecular structure Powder Technol. 65 139–146

    Google Scholar 

  54. AstraZeneca, personal communication.

  55. H. E. Newell G. Buckton (2004) ArticleTitleInverse gas chromatography: investigating whether the technique preferentially probes high energy sites for mixtures of crystalline and amorphous lactose Pharm. Res. 21 1440–1444

    Google Scholar 

Download references

Acknowledgments

M.J.D. would like to thank AstraZeneca and The University of Nottingham for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive J. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, M., Brindley, A., Chen, X. et al. Characterization of Drug Particle Surface Energetics and Young’s Modulus by Atomic Force Microscopy and Inverse Gas Chromatography. Pharm Res 22, 1158–1166 (2005). https://doi.org/10.1007/s11095-005-5647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5647-z

Key Words

Navigation