Pharmaceutical Research

, Volume 22, Issue 7, pp 1158–1166 | Cite as

Characterization of Drug Particle Surface Energetics and Young’s Modulus by Atomic Force Microscopy and Inverse Gas Chromatography

  • Michael Davies
  • Anne Brindley
  • Xinyong Chen
  • Maria Marlow
  • Stephen W. Doughty
  • Ian Shrubb
  • Clive J. Roberts
Research Paper


Particulate interactions are dominated by aspects such as surface topography, exposed chemical moieties, environmental conditions, and thermodynamic properties such as surface free energy (γ). The absolute value and relative magnitude of surface energies of a drug and excipients within a formulation can significantly influence manufacture, processing, and use. This study utilizes and compares the potentially complementary analytical techniques of atomic force microscopy (AFM) and inverse gas chromatography (IGC) in the quantitative determination of the surface energy of drug (budesonide) particles (micronized and unmilled) relevant to inhaled delivery. In addition, the study investigates with AFM another important parameter in determining material interactions, the local mechanical properties of the drug.


AFM was used to acquire force of adhesion (Fadh) and related work of adhesion (WA) and surface energy values between individual mironized drug particles and also model substrates (graphite and mica). In addition, AFM probes were used to interrogate the surface energy of unmilled drug particles. Measurement with AFM probes also yielded localized measurements of Young’s modulus for the unmilled drug. IGC was also used to probe the surface characteristics of the bulk drug material.


The average values for surface energies acquired from budesonide micronized particle interactions with graphite, mica, and drug particles of the same substance were found to range from 35 to 175, 5 to 40, and 10 to 32 mJ m−2, respectively. The unmilled material displayed a range of values of 39–88 mJ m−2 with an average of 60 mJ m−2. The IGC result for the surface energy of the micronized material was 68.47 ± 1.60 mJ m−2. The variability in surface energy from AFM, a feature particularly apparent for the micronized material was attributed to two factors, intrinsic material variations within a single particle and assumptions present within the contact mechanics model used. Here we provide a detailed description of these factors to go some way to rationalize the results. The Young’s modulus of the unmilled drug was determined to be approximately 10 GPa.


The range of determined surface energies between the AFM measurement on graphite, mica, and the drug is proposed to reflect the different chemistries displayed by the drug at the single particle level. The maximum values of these ranges can be related to the sites most likely to be involved in adhesion. AFM and IGC yield surface energy estimates in approximate agreement, but clearly are interrogating surfaces in different fashions. This raises questions as to the nature of the measurement being made by these approaches and to the most appropriate time to use these methods in terms of a direct relation to formulation design, manufacture, and drug delivery. Finally, we demonstrate a novel method for assessing the Young’s modulus of a drug from a single particle.

Key Words

AFM force of adhesion hardness IGC surface free energy work of adhesion Young’s modulus 



M.J.D. would like to thank AstraZeneca and The University of Nottingham for funding.


  1. 1.
    Prime, D., Atkins, P. J., Slater, A., Sumby, B. 1997Review of dry powder inhalersAdv. Drug Deliv. Rev.265158Google Scholar
  2. 2.
    Aulton, M. E. 1996Pharmaceutics—The Science of dosage Form DesignChurchill LivingstoneNew YorkGoogle Scholar
  3. 3.
    Beach, E. R., Tormoen, G. W., Drelich, J., Han, R. 2002Pull-off force measurements between rough surfaces by atomic force microscopyJ. Colloid Interface Sci.2478499Google Scholar
  4. 4.
    Podczeck, F., Newton, J. M., James, M. B. 1994Assessment of adhesion and autoadhesion forces between particles and surfaces: I. The investigation of autoadhesion phenomena of salmeterol xinafoate and lactose monohydrate particles using compacted powder surfacesJ. Adhes. Sci. Technol.814591472Google Scholar
  5. 5.
    Young, P. M., Price, R., Tobyn, M. J., Buttrum, M., Dey, F. 2003Investigation into the effect of humidity on drug–drug interactions using the atomic force microscopeJ. Pharm. Sci.92815822Google Scholar
  6. 6.
    Götzinger, M., Peukert, W. 2003Dispersive forces of particle–surface interactions: direct AFM measurements and modellingPowder Technol.130102109Google Scholar
  7. 7.
    Eve, J. K., Patel, N., Luk, S. Y., Ebbens, S. J., Roberts, C. J. 2002A study of single drug particle adhesion interactions using atomic force microscopyInt. J. Pharm.2381727Google Scholar
  8. 8.
    Lam, K. K., Newton, J. M. 1992Effect of temperature on particulate solid adhesion to a substrate surfacePowder Technol73117125Google Scholar
  9. 9.
    Binnig, G., Quate, C. F., Gerber, C. 1986Atomic force microscopePhys. Rev. Lett.56930933Google Scholar
  10. 10.
    Louey, M. D., Mulvaney, P., Stewart, P. J. 2001Characterisation of adhesional properties of lactose carriers using atomic force microscopyJ. Pharm. Biomed. Anal.25559567Google Scholar
  11. 11.
    Bėrard, V., Lesniewska, E., Andrės, C., Pertuy, D., Laroche, C., Pourcelot, Y. 2002Dry powder inhaler: Influence of humidity on topology and adhesion studied by AFMInt. J. Pharm.232213224Google Scholar
  12. 12.
    Eastman, T., Zhu, D. 1996Adhesion forces between surface-modified AFM tips and a mica surfaceLangmuir1228592862Google Scholar
  13. 13.
    Sedin, D. L., Rowlen, K. L. 2000Adhesion forces measured by atomic force microscopy in humid airAnal. Chem.7221832189Google Scholar
  14. 14.
    Binggeli, M., Mate, C. M. 1994Influence of capillary condensation of water on nanotribology studied by force microscopyAppl. Phys. Lett.65415417Google Scholar
  15. 15.
    Ducker, W. A., Senden, T. J. 1992Measurement of forces in liquids using a force microscopeLangmuir818311836Google Scholar
  16. 16.
    Vervaet, C., Byron, P. R. 1999Drug–surfactant–propellant interactions in HFA formulationsInt. J. Pharm.1861330Google Scholar
  17. 17.
    Butt, H. J. 1991Measuring electrostatic, Van der Waals and hydration forces in electrolyte solutions with an atomic force microscopeBiophys. J.6014381444Google Scholar
  18. 18.
    Sindel, U., Zimmermann, I. 2001Measurement of interaction forces between individual powder particles using an atomic force microscopePowder Technol.117247254Google Scholar
  19. 19.
    Relini, A., Sottini, S., Zuccotti, S., Bolognesi, M., Gliozzi, A., Rolandi, R. 2003Measurement of the surface free energy of streptavidin crystals by atomic force microscopyLangmuir19 29082912Google Scholar
  20. 20.
    Zajic, L., Buckton, G. 1990The use of surface energy values to predict optimum binder selection for granulationsInt. J. Pharm.59155164Google Scholar
  21. 21.
    Packman, D. E. 2003Surface energy, surface topography and adhesionInt. J. Adhes. Adhes.23437448Google Scholar
  22. 22.
    Kendall, K., Stainton, C. 2001Adhesion and aggregation of fine particlesPowder Technol.121223229Google Scholar
  23. 23.
    Planinšek, O., Trojak, A., Srčič, S. 2001The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurementsInt. J. Pharm.221211217Google Scholar
  24. 24.
    Buckton, G., Newton, J. M. 1985Assessment of the wettability and surface energy of a pharmaceutical powder by liquid penetrationJ. Pharm. Pharmacol.37605609Google Scholar
  25. 25.
    Gaisford, S., Buckton, G. 2001Potential applications of microcalorimetry for the study of physical processes in pharmaceuticalsThermochim. Acta380185198Google Scholar
  26. 26.
    Phipps, M. A., Mackin, L. A. 2000Application of isothermal microcalorimetry in solid state drug developmentPSTT3917Google Scholar
  27. 27.
    Sun, C., Berg, J. C. 2003The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilutionJ. Colloid Interface Sci.260443448Google Scholar
  28. 28.
    Keller, D. S., Luner, P. 2000Surface energetics of calcium carbonates using inverse gas chromatographyColloids Surf. A: Physicochem. Eng. Asp.161401415Google Scholar
  29. 29.
    Podczeck, F. 1998Particle–Particle Adhesion in Pharmaceutical Powder HandlingImperial College PressLondonGoogle Scholar
  30. 30.
    Feeley, J. C., York, P., Sumby, B. S., Dicks, H. 2002Processing effects on the surface properties of α-lactose monohydrate assessed by inverse gas chromatography (IGC)J. Mater. Sci.37217222Google Scholar
  31. 31.
    Grimsey, I. M., Feeley, J. C., York, P. 2002Analysis of the surface energy of pharmaceutical powders by inverse gas chromatographyJ. Pharm. Sci.92571583Google Scholar
  32. 32.
    Ticehurst, M. D., York, P., Rowe, R. C., Dwivedi, S. K. 1996Characterisation of the surface properties of α-lactose monohydrate with inverse gas chromatography, used to detect batch variationInt. J. Pharm.1419399Google Scholar
  33. 33.
    Feeley, J. C., York, P., Sumby, B. S., Dicks, H. 1998Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisationInt. J. Pharm.1728996Google Scholar
  34. 34.
    Ahfat, N. M., Buckton, G., Burrows, R., Ticehurst, M. D. 2000An exploration of inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging dataEur. J. Pharm. Sci.9271276Google Scholar
  35. 35.
    Hancock, B. C., Clas, S.-D., Christensen, K. 2000Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders: 1. The elasticity and fracture behaviour of microcrystalline celluloseInt. J. Pharm.2092735Google Scholar
  36. 36.
    Rotsch, C., Radmacher, M. 2000Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy studyBiophys. J.78520535Google Scholar
  37. 37.
    Lieber, S. C., Aubry, N., Pain, J., Diaz, G., Kim, S. J., Vatner, S. F. 2004Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentationAm. J. Physiol, Heart Circ. Physiol.287H645H651Google Scholar
  38. 38.
    Liang, X. M., Mao, G. Z., Ng, K. Y. S. 2004Mechanical properties and stability measurement of cholesterol-containing liposome onmica by atomic force microscopyJ. Colloid Interface Sci.2785362Google Scholar
  39. 39.
    Lubarsky, G. V., Davidson, M. R., Bradley, R. H. 2004Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPSSurf. Sci.558 135144Google Scholar
  40. 40.
    Soifer, Y. M., Verdyan, A. 2003Investigation of the local mechanical properties of potassium chloride single crystals by atomic force microscopyPhys. Solid State4517011705Google Scholar
  41. 41.
    Albertsson, J., Oskarsson, Á., Svensson, C. 1978X-ray study of budesonide: molecular structures and solid solutions of the (22S) and (22R) epimers of 11β,21-dihydroxy-16α,17α-propylmethylenedioxy-1,4-pregnadiene-3,20-dioneActa Crystallogr., B3430273036Google Scholar
  42. 42.
    Hutter, J. L., Bechhoefer, J. 1993Calibration of atomic-force microscope tipsRev. Sci. Instrum.6418681873Google Scholar
  43. 43.
    Hooten, J. C., German, C. S., Allen, S., Davies, M. C., Roberts, C. J., Tendler, S. J. B., Williams, P. M. 2003Characterization of particle-interactions by atomic force microscopy: effect of contact areaPharm. Res.20508514Google Scholar
  44. 44.
    Williams, P. M., Shakesheff, K. M., Davies, M. C., Jackson, D. E., Roberts, C. J., Tendler, S. J. B. 1996Blind reconstruction ofscanning probe image dataJ. Vac. Sci. Technol., B1415571562Google Scholar
  45. 45.
    Williams, P. M., Davies, M. C., Roberts, C. J., Tendler, S. J. B. 1998Noise-compliant tip-shape derivationAppl. Phys., A66 S911S914Google Scholar
  46. 46.
    Schaefer, D. M., Carpenter, M., Gady, B., Reifenberger, R., Demejo, L. P., Rimai, D. S. 1995Surface roughness and its influence on particle adhesion using atomic force techniquesJ. Adhes. Sci. Technol.910491062Google Scholar
  47. 47.
    Israelachvili, J. N. 1991Intermolecular and Surface Forces2nd ed.Academic PressSan DiegoGoogle Scholar
  48. 48.
    Plassard, C., Lesniewska, E., Pochard, I., Nonat, A. 2004Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaleUltramicroscopy100331338Google Scholar
  49. 49.
    Schultz, J., Lavielle, L. 1989Interfacial properties of carbon fibre–epoxy matrix compositesLloyd, D. R.Ward, T. C.Schreiber, H. P. eds. Inverse Gas Chromatography Characterisation of Polymers and other Materials; ACS Symp. Ser. 391American Chemical SocietyWashington, DC185202Google Scholar
  50. 50.
    Johnson, K. L., Kendall, K., Roberts, A. D. 1971Surface energy and the contact of elastic solidsProc. R. Soc. Lond., A324301313Google Scholar
  51. 51.
    Beach, E. R., Tormoen, G. W., Drelich, J. 2002Pull-off forces measured between hexadecanethiol self-assembled monolayers in air using an atomic force microscope: analysis of surface free energyJ. Adhes. Sci. Technol.16845868Google Scholar
  52. 52.
    Barlow, S. G., Manning, D. A. 1999Influence of time and temperature in reactions and transformations of muscovite micaBr. Ceram. Trans.98122126Google Scholar
  53. 53.
    Roberts, R. J., Rowe, R. C., York, P. 1991The relationship between Young’s modulus of elasticity of organic solids and their molecular structurePowder Technol.65139146Google Scholar
  54. 54.
    AstraZeneca, personal communication.Google Scholar
  55. 55.
    Newell, H. E., Buckton, G. 2004Inverse gas chromatography: investigating whether the technique preferentially probes high energy sites for mixtures of crystalline and amorphous lactosePharm. Res.2114401444Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Michael Davies
    • 1
  • Anne Brindley
    • 2
  • Xinyong Chen
    • 1
  • Maria Marlow
    • 2
  • Stephen W. Doughty
    • 1
  • Ian Shrubb
    • 2
  • Clive J. Roberts
    • 1
  1. 1.Laboratory of Biophysics and Surface AnalysisSchool of Pharmacy, The University of NottinghamNottinghamUK
  2. 2.AstraZeneca R&D Charnwood, Pharmaceutical & Analytical R&DLoughboroughUK

Personalised recommendations