Pharmaceutical Research

, Volume 22, Issue 7, pp 1186–1194 | Cite as

Interaction of Polysorbate 80 with Erythropoietin: A Case Study in Protein–Surfactant Interactions

  • Annabelle P. Villalobos
  • Srinivas R. Gunturi
  • George A. Heavner
Research Paper


The cause of antibody positive pure red cell aplasia associated with the subcutaneous administration of EPREX® to patients with chronic kidney failure has been determined to be due to the leaching of weakly adjuvant compounds from the uncoated rubber stoppers that were formerly used in prefilled syringes. Other researchers have suggested that polysorbate 80 micelles containing erythropoietin may be a causative factor. The purpose of this work was to repeat previously published studies in a more controlled manner and to define the precise nature of the interactions between polysorbate 80 and erythropoietin.


The contents of EPREX® prefilled syringes and laboratory-prepared, well-characterized formulations of EPREX® were analyzed by size exclusion chromatography. Fractions were analyzed for the presence of erythropoietin by ELISA. EPREX® formulations prepared with increasing amounts of polysorbate 80 were analyzed by light scattering.


Well-controlled chromatographic studies showed that when EPREX® formulations containing no aggregate were analyzed by high-performance liquid chromatography, erythropoietin monomer could not be detected under the polysorbate 80 peak. Dimer and oligomers of erythropoietin coeluted under the polysorbate 80 peak as the molecular weights overlapped on the size exclusion chromatogram. Solution light scattering indicated that polysorbate 80 associates with erythropoietin in a defined stoichiometric ratio of 1:12.


Based on controlled studies, previous results suggesting that EPREX® contains micelle-associated erythropoietin were incorrect. As with other surfactants and proteins, polysorbate 80 associates with erythropoietin in a defined stoichiometric ratio.

Key Words

EPREX® erythropoietin micelles polysorbate 80 PRCA 



The authors would like to acknowledge the excellent technical assistance provided by Patricia Brennan, Wise Lumax, Ken Bui, Alexandra Marin, and Samantha Ranaweera.


  1. 1.
    Casadevall, N., Nataf, J., Viron, B., Kolta, A., Kiladjian, J.-J., Martin-Dupont, P., Michaud, P., Papo, T., Ugo, V., Teyssandier, I., Varet, B., Mayeux, P. 2002Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietinNew Engl. J. Med.346469475Google Scholar
  2. 2.
    Peces, R., de la Torre, M., Alcázarh, R., Urra, J. M. 1996Antibodies against recombinant human erythropoietin in a patient with erythropoietin-resistant anemiaNew Engl. J. Med.335523524Google Scholar
  3. 3.
    Prabhakar, S. S., Muhlfelder, T. 1997Antibodies to recombinant human erythropoietin causing pure red cell aplasiaClin. Nephrol.47331335Google Scholar
  4. 4.
    Bergrem, H., Danielson, B. G., Eckardt, K. U., Kurtz, A., Stridsberg, M. 1993A case of antierythropoietin antibodies following recombinant human erythropoietin treatmentMolecular Physiol. Clin. Appl.265273Google Scholar
  5. 5.
    Sharma, B., Bader, F., Templeman, T., Lisi, P., Ryan, M., Heavner, G. A. 2004Technical investigations into the cause of the increased incidence of antibody-mediated pure red cell aplasia associated with EPREX®Eur. J. Hosp. Pharm.58691Google Scholar
  6. 6.
    Boven, K., Stryker, S., Knight, J., Thomas, A., Regenmortel, M., Kemeny, D. M., Power, D., Rossert, J., Casadevall,  N. 2005The increased incidence of pure red cell aplasia with an EPREX® formulation in uncoated rubber stopper syringesKidney International6723462353Google Scholar
  7. 7.
    Hermeling, S., Schellekens, H., Crommelin, D. J. A., Jiskoot, W. 2003Micelle-associated protein in epoetin formulations: a risk factor for immunogenicity?Pharm. Res.2019031907Google Scholar
  8. 8.
    Tiefenbach, K.-J., Durchschlag, H., Jaenicke, R. 1999Spectroscopic and hydrodynamic investigations of nonionic and zwitterionic detergentsProg. Colloid Polym. Sci.113135140Google Scholar
  9. 9.
    DePaolis, A. M., Advani, J. V., Sharma, B. G. 1995Characterization of erythropoietin dimerizationJ. Pharm. Sci.8412801284Google Scholar
  10. 10.
    Deby, P., Strickland, T., Rohde, M., Stoney, K., Rush, R. 1996Identification of residues involved in homodimer formation of recombinant human erythropoietinInt. J. Pept. Protein Res.47201208Google Scholar
  11. 11.
    B. Kerwin, S. Deechongkit, S. Park, J. Kim, and H. Burnett. Effects of polysorbates 20 and 80 on the structure and stability of darbepoetin alfa and epoetin alfa. In Abstracts, XLI Congress of the European Dialysis and Transplant Association, Lisbon, Portugal, 2004.Google Scholar
  12. 12.
    Funasaki, N. 1993Gel filtration chromatographic study on the self-association of surfactants and related compoundsAdv. Colloid Interface Sci.4387136Google Scholar
  13. 13.
    Tiefenbach, K.-J., Durchschlag, H., Jaenicke, R. 1999Spectroscopic and hydrodynamic investigations of nonionic and zwitterionic detergentsProg. Colloid Polym. Sci.113135140Google Scholar
  14. 14.
    Schmidt, P., Sucker, H. 1970Bestimmung des Micellmolekulargewichts von Tensiden mit der Gel-ChromatographieFresenius Z. Anal. Chem.250384385Google Scholar
  15. 15.
    Wan, L. S. C., Lee, P. F. S. 1974CMC of polysorbatesJ. Pharm. Sci.63136137Google Scholar
  16. 16.
    Pitt-Rivers, R., Impiombato, R. S. A. 1968Binding of sodium dodecyl sulfate to various proteinsBiochem. J.109825830Google Scholar
  17. 17.
    Bam, N. B., Randolph, T. W., Cleland, J. L. 1995Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic techniquePharm. Res.12211Google Scholar
  18. 18.
    Hilty, C., Wider, G., Fernández, C., Wüthrich, K. 2004Membrane protein–lipid interactions in mixed micelles studies by NMR spectroscopy with the use of paramagnetic reagentsChemBioChem5467473Google Scholar
  19. 19.
    Wider, G., Lee, K. H., Wüthrich, K. 1982Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra, glucagon bound to perdeuterated dodecylphosphocholine micellesJ. Mol. Biol.155367388Google Scholar
  20. 20.
    Holtz, J. S. W., Holtz, J. H., Chi, Z., Asher, S. A. 1999Ultraviolet Raman examination of the environmental dependence of Bombolitin I and bombolitin III secondary structureBiophys. J.7632273234Google Scholar
  21. 21.
    Lauterwein, J., Bösch, C., Brown, L. R., Wüthrich, K. 1979Physicochemical studies of the protein–lipid interactions in melittin-containing micellesBiochim. Biophys. Acta556244264Google Scholar
  22. 22.
    Lee, K. H., Fitton, J. E., Wüthrich, K. 1987Nuclear magnetic resonance investigation of the conformation of d-haemolysin bound to dodecylphosphocholine micellesBiochim. Biophys. Acta911144153Google Scholar
  23. 23.
    Arora, A., Tamm, L. K. 2001Biophysical approaches to membrane protein structure determinationCurr. Opin. Struct. Biol.11540547Google Scholar
  24. 24.
    Dean, W. L. 1982Ca2+-ATPase–detergent interactionsBiophys. J.375657Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Annabelle P. Villalobos
    • 1
  • Srinivas R. Gunturi
    • 2
  • George A. Heavner
    • 3
  1. 1.Biotech DevelopmentGlobal Biological Supply ChainRaritanUSA
  2. 2.Pharmaceutical Sciences, Global Biological Supply ChainRaritanUSA
  3. 3.Biopharmaceutical SciencesProtein Design, Characterization, Optimization and AnalysisRadnorUSA

Personalised recommendations