Pharmaceutical Research

, Volume 22, Issue 4, pp 619–627 | Cite as

Differential Contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in Vivo Renal Uptake of Uremic Toxins in Rats

  • Tsuneo Deguchi
  • Yousuke Kouno
  • Tetsuya Terasaki
  • Akira Takadate
  • Masaki Otagiri
Research Papers

No Heading


Evidence suggests that uremic toxins such as hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS), and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) promote the progression of renal failure by damaging tubular cells via rat organic anion transporter 1 (rOat1) and rOat3 on the basolateral membrane of the proximal tubules. The purpose of the current study is to evaluate the in vivo transport mechanism responsible for their renal uptake.


We investigated the uremic toxins transport mechanism using the abdominal aorta injection technique [i.e., kidney uptake index (KUI) method], assuming minimal mixing of the bolus with serum protein from circulating serum.


Maximum mixing was estimated to be 5.8% of rat serum by measuring estrone sulfate extraction after addition of 0–90% rat serum to the arterial injection solution. Saturable renal uptake of p-aminohippurate (PAH, Km = 408 μM) and benzylpenicillin (PCG, Km = 346 μM) was observed, respectively. The uptake of PAH and PCG was inhibited in a dose-dependent manner by unlabeled PCG (IC50 = 47.3 mM) and PAH (IC50 = 512 μM), respectively, suggesting that different transporters are responsible for their uptake. A number of uremic toxins inhibited the renal uptake of PAH and PCG. Excess PAH, which could inhibit rOat1 and rOat3, completely inhibited the saturable uptake of IA, IS, and CMPF by the kidney, and by 85% for HA uptake. PCG inhibited the total saturable uptake of HA, IA, IS, and CMPF by 10%, 10%, 45%, and 65%, respectively, at the concentration selective for rOat3.


rOat1 could be the primary mediator of the renal uptake of HA and IA, accounting for approximately 75% and 90% of their transport, respectively. rOat1 and rOat3 contributed equally to the renal uptake of IS. rOat3 could account for about 65% of the uptake of CMPF under in vivo physiologic conditions. These results suggest that rOat1 and rOat3 play an important role in the renal uptake of uremic toxins and the induction of their nephrotoxicity.

Key Words:

chronic renal failure kidney uptake index nephrotoxicity organic anion transporters uremic toxins 





estrone sulfate






indoxyl sulfate


kidney uptake index




benzylpenicillin; rOat, rat organic anion transporter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. R. Vanholder, A. Argiles, U. Baurmeister, P. Brunet, W. Clark, G. Cohen, P. P. De Deyn, R. Deppisch, B. Descamps-Latscha, T. Henle, A. Jorres, Z. A. Massy, M. Rodriguez, B. Stegmayr, P. Stenvinkel, and M. L. Wratten. Uremic toxicity: present state of the art. Int. J. Artif. Organs 24:695–725 (2001).PubMedGoogle Scholar
  2. 2.
    2. Y. Tsutsumi, T. Deguchi, M. Takano, A. Takadate, W. E. Lindup, and M. Otagiri. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat. J. Pharmacol. Exp. Ther. 303:880–887 (2002).CrossRefPubMedGoogle Scholar
  3. 3.
    3. T. Deguchi, M. Nakamura, Y. Tsutsumi, A. Suenaga, and M. Otagiri. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm. Drug Dispos. 24:345–355 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    4. T. Miyazaki, M. Ise, H. Seo, and T. Niwa. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int. Suppl. 62:S15–S22 (1997).PubMedGoogle Scholar
  5. 5.
    5. M. Satoh, H. Hayashi, M. Watanabe, K. Ueda, H. Yamato, T. Yoshioka, and M. Motojima. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol 95:e111–e118 (2003).CrossRefPubMedGoogle Scholar
  6. 6.
    6. T. Miyazaki, I. Aoyama, M. Ise, H. Seo, and T. Niwa. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol. Dial. Transplant. 15:1773–1781 (2000).CrossRefPubMedGoogle Scholar
  7. 7.
    7. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 63:1671–1680 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    8. T. Niwa and M. Ise. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124:96–104 (1994).PubMedGoogle Scholar
  9. 9.
    9. T. Niwa, T. Nomura, S. Sugiyama, T. Miyazaki, S. Tsukushi, and S. Tsutsui. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 62:S23–S28 (1997).PubMedGoogle Scholar
  10. 10.
    10. H. Kusuhara and Y. Sugiyama. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control. Rel. 78:43–54 (2002).CrossRefGoogle Scholar
  11. 11.
    11. T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, and Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 65:162–174 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    12. A. Tsuji, T. Terasaki, I. Tamai, and K. Takeda. In vivo evidence for carrier-mediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J. Pharmacol. Exp. Ther. 253:315–320 (1990).PubMedGoogle Scholar
  13. 13.
    13. T. Deguchi, S. Ohtsuki, M. Otagiri, H. Takanaga, H. Asaba, S. Mori, and T. Terasaki. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 61:1760–1768 (2002).CrossRefPubMedGoogle Scholar
  14. 14.
    14. S. A. Terlouw, R. Masereeuw, and F. G. Russel. Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem. Pharmacol. 65:1393–1405 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    15. T. Sakai, A. Takadate, and M. Otagiri. Characterization of binding site of uremic toxins on human serum albumin. Biol. Pharm. Bull. 18:1755–1761 (1995).PubMedGoogle Scholar
  16. 16.
    16. G. Chaudhuri, C. Verheugen, W. M. Pardridge, and H. L. Judd. Selective availability of protein bound estrogen and estrogen conjugates to the rat kidney. J. Endocrinol. Invest. 10:283–290 (1987).PubMedGoogle Scholar
  17. 17.
    17. Y. Tsutsumi, T. Maruyama, A. Takadate, M. Goto, H. Matsunaga, and M. Otagiri. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin. Pharm. Res. 16:916–923 (1999).CrossRefPubMedGoogle Scholar
  18. 18.
    18. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).PubMedGoogle Scholar
  19. 19.
    19. W. M. Pardridge and L. J. Mietus. Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J. Neurochem. 38:955–962 (1982).PubMedGoogle Scholar
  20. 20.
    20. W. M. Pardridge, E. M. Landaw, L. P. Miller, L. D. Braun, and W. H. Oldendorf. Carotid artery injection technique: bounds for bolus mixing by plasma and by brain. J. Cereb. Blood Flow Metab. 5:576–583 (1985).PubMedGoogle Scholar
  21. 21.
    21. M. Holler, K. Dengler, and H. Breuer. Disposition of oestrone sulphate by the isolated perfused rat kidney. Biochem. Soc. Trans. 5:243–245 (1977).PubMedGoogle Scholar
  22. 22.
    22. M. Hasegawa, H. Kusuhara, D. Sugiyama, K. Ito, S. Ueda, H. Endou, and Y. Sugiyama. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J. Pharmacol. Exp. Ther. 300:746–753 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    23. M. Hasegawa, H. Kusuhara, H. Endou, and Y. Sugiyama. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J. Pharmacol. Exp. Ther. 305:1087–1097 (2003).CrossRefPubMedGoogle Scholar
  24. 24.
    24. Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol. Pharmacol. 61:982–988 (2002).CrossRefPubMedGoogle Scholar
  25. 25.
    25. S. Mori, H. Takanaga, S. Ohtsuki, T. Deguchi, Y. S. Kang, K. Hosoya, and T. Terasaki. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 23:432–440 (2003).CrossRefPubMedGoogle Scholar
  26. 26.
    26. H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274:13675–13680 (1999).CrossRefPubMedGoogle Scholar
  27. 27.
    27. D. H. Sweet, L. M. Chan, R. Walden, X. P. Yang, D. S. Miller, and J. B. Pritchard. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Renal Physiol. 284:F763–F769 (2003).PubMedGoogle Scholar
  28. 28.
    28. T. Aiba, S. Kubota, and T. Koizumi. Application of a non-linear dispersion model to analysis of the renal handling of p-aminohippurate in isolated perfused rat kidney. Biol. Pharm. Bull. 22:633–641 (1999).PubMedGoogle Scholar
  29. 29.
    29. D. Sugiyama, H. Kusuhara, Y. Shitara, T. Abe, P. J. Meier, T. Sekine, H. Endou, H. Suzuki, and Y. Sugiyama. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 298:316–322 (2001).PubMedGoogle Scholar
  30. 30.
    30. B. C. Burckhardt and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Tsuneo Deguchi
    • 1
  • Yousuke Kouno
    • 1
  • Tetsuya Terasaki
    • 2
    • 3
    • 4
  • Akira Takadate
    • 5
  • Masaki Otagiri
    • 1
  1. 1.Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  3. 3.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
  4. 4.Solution-Oriented Research for Science and Technology of Japan Science and Technology AgencySaitamaJapan
  5. 5.Daiichi College of Pharmaceutical SciencesFukuokaJapan

Personalised recommendations