Pharmaceutical Research

, Volume 21, Issue 12, pp 2307–2319 | Cite as

Marine Alkaloid Polycarpine and Its Synthetic Derivative Dimethylpolycarpine Induce Apoptosis in JB6 Cells Through p53- and Caspase 3-Dependent Pathways

  • Sergey N. Fedorov
  • Ann M. Bode
  • Valentin A. Stonik
  • Irina A. Gorshkova
  • Patricia C. Schmid
  • Oleg S. Radchenko
  • Evgueni V. Berdyshev
  • Zigang Dong

No Heading


Polycarpine from ascidian Polycarpa aurata was previously found to be active against different human tumor cells. In this study, we investigated the antitumor mechanisms of polycarpine and its synthetic derivative, desmethoxyethoxy-polycarpine (dimethylpolycarpine), through the induction of apoptosis. This new knowledge regarding the proapoptotic action of polycarpine and dimethylpolycarpine should lead to a better understanding of their effects and development of a new class of anticancer drugs.


Apoptosis was clearly observed by flow cytometry and Western blotting using an antibody against cleaved caspase-3 as an apoptotic marker.


Polycarpines differentially activated p38 kinase, JNKs, and ERKs in JB6 Cl 41 cells. The polycarpines-induced apoptosis was decreased in cells expressing a dominant-negative mutant of JNK. Both compounds stimulated p53-dependent transcriptional activity and phosphorylation. Induction of p53-phosphorylation at serine 15 was suppressed in JNK1 and JNK2 knockout cells. Furthermore, polycarpines were unable to induce apoptosis in p53-deficient MEFs in contrast to a strong induction of apoptosis in wild type MEFs, suggesting that p53 is involved in apoptosis induced by polycarpines. The p53 phosphorylation in turn was mediated by activated JNKs.


These results indicate that all three MAPK signaling pathways are involved in the response of JB6 cells to treatment with polycarpines. Evidence also supports a proapoptotic role of the JNKs signaling pathway in vivo and clearly indicates that JNKs are required for phosphorylation of c-Jun, activation of p53, and subsequent apoptosis induced by polycarpines.

Key words:

nanticancer action apoptosis marine 



epidermal growth factor


extracellular signal-regulated protein kinases


fetal bovine serum


c-Jun NH2-terminal kinases


mitogen-activated protein kinases


minimum essential medium


polyacrylamide gel electrophoresis


bis[2-amino-4-(4-methoxyphenyl)-1-methyl-5-imidazolyl]disulfide dihydrochloride TPA, 12-O-tetradecanoyl-phorbol-13-acetate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. K. L. Rinehart, R. Sakai, T. G. Holt, N. L. Fregeua, J. P. Thomas, D. S. Seigler, G. R. Wilson, and L. S. Shield. Biologically active natural products. Pure Appl. Chem. 62:1277–1280 (1990).Google Scholar
  2. 2.
    2. K. L. Rinehart. Antitumor compounds from tunicates. Med. Res. Rev. 20:1–27 (2000).Google Scholar
  3. 3.
    3. B. Haefner. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 8:536–544 (2003).Google Scholar
  4. 4.
    4. A. M. Mayerand V. K. Lehmann. Marine pharmacology in 1999: antitumor and cytotoxic compounds. Anticancer Res. 21:2489–2500 (2001).Google Scholar
  5. 5.
    5. S. A. Fedoreyev, O. S. Radchenko, V. L. Novikov, V. V. Isakov, A. Ilyin, M. Popov, G. B. Elyakov, P. T. Murphy, R. H. Willis, and J. T. Baker. Polycarpine, a novel cytotoxic sulfer-containing alkaloid from the marine ascidian Polycarpa Aurata and related compounds. Eighth International Symposium on Marine Natural Products, Tenerife, Canary Islands, Spain, 1995, pp. 196–197.Google Scholar
  6. 6.
    6. O. S. Radchenko, V. L. Novikov, R. H. Willis, P. T. Murphy, and G. B. Elyakov. Synthesis of polycarpine, a cytotoxic sulfur-containing alkaloid from the ascidian Polycarpa aurata, and related compounds. Tetrahedron Lett. 38:3581–3584 (1997).Google Scholar
  7. 7.
    7. W. Bursch, F. Oberhammer, and R. Schulte-Hermann. Cell death by apoptosis and its protective role against disease. Trends Pharmacol. Sci. 13:245–251 (1992).Google Scholar
  8. 8.
    8. J. A. Hickman. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 11:121–139 (1992).Google Scholar
  9. 9.
    9. A. J. Levine. p53, the cellular gatekeeper for growth and division. Cell 88:323–331 (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    10. C. Prives and P. A. Hall. The p53 pathway. J. Pathol. 187:112–126 (1999).Google Scholar
  11. 11.
    11. D. A. Liebermann, B. Hoffman, and R. A. Steinman. Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11:199–210 (1995).Google Scholar
  12. 12.
    12. I. Budihardjo, H. Oliver, M. Lutter, X. Luo, and X. Wang. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15:269–290 (1999).Google Scholar
  13. 13.
    13. C. Huang, W. Y. Ma, A. Goranson, and Z. Dong. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20:237–242 (1999).Google Scholar
  14. 14.
    14. M. Nomura, A. Kaji, W. Ma, K. Miyamoto, and Z. Dong. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Mol. Carcinog. 31:83–89 (2001).Google Scholar
  15. 15.
    15. C. Huang, W. Y. Ma, J. Li, S. S. Hecht, and Z. Dong. Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res. 58:4102–4106 (1998).Google Scholar
  16. 16.
    16. Z. He, W. Y. Ma, T. Hashimoto, A. M. Bode, C. S. Yang, and Z. Dong. Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res. 63:4396–4401 (2003).Google Scholar
  17. 17.
    17. C. Huang, W. Y. Ma, M. R. Young, N. Colburn, and Z. Dong. Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc. Natl. Acad. Sci. USA 95:156–161 (1998).Google Scholar
  18. 18.
    18. D. T. Loo and C. W. Cotman. Primary and extended culture of embryonic mouse cells: establishment of a novel cell culture model of apoptosis and neural differentiation. In J. E. Celis (ed.), Cell Biology: A Laboratory Handbook, Vol. 1, Academic Press, New York, 1994, pp. 45–53.Google Scholar
  19. 19.
    19. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).PubMedGoogle Scholar
  20. 20.
    20. K. L. Rinehart, T. G. Holt, N. L. Fregeau, J. G. Stroh, P. A. Keifer, F. Sun, L. H. Li, and D. G. Martin. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 55:4512–4515 (1990).Google Scholar
  21. 21.
    21. J. Kobayash, J.-F. Cheng, H. Nakamura, and Y. Ohizumi. Ascididemin, a novel pentacyclic aromatic alkaloid with potent antileukemic activity from the okinawan tunicate. Tetrahedron Lett. 29:1177–1180 (1988).Google Scholar
  22. 22.
    22. X.-H. Gu, X.-Z. Wang, and B. Jiang. Syntheses and biological activities of bis(3-indolyl)thiazoles, analogues of marine bis(indole)alkaloid nortopsentins. Bioorg. Med. Chem. 9:569–572 (1999).Google Scholar
  23. 23.
    23. P. Schupp, K. Steube, C. Meyer, and P. Proksch. Anti-proliferative effects of new staurosporine derivatives isolated from a marine ascidian and its predatory flatworm. Cancer Lett. 174:165–172 (2001).Google Scholar
  24. 24.
    24. N. B. Perry, L. Ettouati, M. Litaudon, J. W. Blunt, and M. H. G. Munro. Alkaloids from the antarctic sponge Kirkpatrickia varialosa. Tetrahedron 50:3987–3992 (1994).Google Scholar
  25. 25.
    25. C. van Kesteren, C. Twelves, A. Bowman, K. Hoekman, L. Lopez-Lazaro, J. Jimeno, C. Guzman, R. A. Mathot, A. Simpson, J. B. Vermorken, J. Smyth, J. H. Schellens, M. J. Hillebrand, H. Rosing, and J. H. Beijnen. Clinical pharmacology of the novel marine-derived anticancer agent Ecteinascidin 743 administered as a 1- and 3-h infusion in a phase I study. Anticancer Drugs 13:381–393 (2002).Google Scholar
  26. 26.
    26. B. Albella, G. Faircloth, L. Lopez-Lazaro, C. Guzman, J. Jimeno, and J. A. Bueren. In vitro toxicity of ET-743 and aplidine, two marine-derived antineoplastics, on human bone marrow haematopoietic progenitors. comparison with the clinical results. Eur. J. Cancer 38:1395–1404 (2002).Google Scholar
  27. 27.
    27. J. M. Kyriakis and J. Avruch. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807–869 (2001).Google Scholar
  28. 28.
    28. Y. T. Ip and R. J. Davis. Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr. Opin. Cell Biol. 10:205–219 (1998).Google Scholar
  29. 29.
    29. Y. R. Chen, X. Wang, D. Templeton, R. J. Davis, and T. H. Tan. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J. Biol. Chem. 271:31929–31936 (1996).Google Scholar
  30. 30.
    30. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331 (1995).PubMedGoogle Scholar
  31. 31.
    31. M. Verheij, R. Bose, X. H. Lin, B. Yao, W. D. Jarvis, S. Grant, M. J. Birrer, E. Szabo, L. I. Zon, J. M. Kyriakis, A. Haimovitz-Friedman, Z. Fuks, and R. N. Kolesnick. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380:75–79 (1996).Google Scholar
  32. 32.
    32. H. Seimiya, T. Mashima, M. Toho, and T. Tsuruo. c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J. Biol. Chem. 272:4631–4636 (1997).Google Scholar
  33. 33.
    33. E. J. Martinez, E. J. Corey, and T. Owa. Antitumor activity- and gene expression-based profiling of ecteinascidin Et 743 and phthalascidin Pt 650. Chem. Biol. 8:1151–1160 (2001).Google Scholar
  34. 34.
    34. L. Dassonneville, N. Wattez, B. Baldeyrou, C. Mahieu, A. Lansiaux, B. Banaigs, I. Bonnard, and C. Bailly. Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukemia cells. Biochem. Pharmacol. 60:527–537 (2000).Google Scholar
  35. 35.
    35. C. Y. Kuan, D. D. Yang, D. R. Samanta Roy, R. J. Davis, P. Rakic, and R. A. Flavell. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676 (1999).Google Scholar
  36. 36.
    36. M. Allen, L. Svensson, M. Roach, J. Hambor, J. McNeish, and C. A. Gabel. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191:859–870 (2000).Google Scholar
  37. 37.
    37. J. L. Adams, A. M. Badger, S. Kumar, and J. C. Lee. p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog. Med. Chem. 38:1–60 (2001).Google Scholar
  38. 38.
    38. Z. Guan, S. Y. Buckman, A. P. Pentland, D. J. Templeton, and A. R. Morrison. Induction of cyclooxygenase-2 by the activated MEKK1 ?? SEK1/MKK4 ?? p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 273:12901–12908 (1998).Google Scholar
  39. 39.
    39. M. Tsujii, S. Kawano, and R. N. DuBois. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. USA 94:3336–3340 (1997).Google Scholar
  40. 40.
    40. M. Tsujii and R. N. DuBois. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501 (1995).CrossRefPubMedGoogle Scholar
  41. 41.
    41. N. Fujita and T. Tsuruo. Survival-signaling pathway as a promising target for cancer chemotherapy. Cancer Chemother. Pharmacol. 52(Suppl 1):S24–S28 (2003).Google Scholar
  42. 42.
    42. K. H. Vousden. p53: death star. Cell 103:691–694 (2000).Google Scholar
  43. 43.
    43. E. S. Hickmanand K. Helin. The p53 tumour suppressor protein. Biotechnol. Genet. Eng. Rev. 17:179–211 (2000).Google Scholar
  44. 44.
    44. T. Unger, R. V. Sionov, E. Moallem, C. L. Yee, P. M. Howley, M. Oren, and Y. Haupt. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–3212 (1999).Google Scholar
  45. 45.
    45. M. Hollstein, K. Rice, M. S. Greenblatt, T. Soussi, R. Fuchs, T. Sorlie, E. Hovig, B. Smith-Sorensen, R. Montesano, and C. C. Harris. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22:3551–3555 (1994).Google Scholar
  46. 46.
    46. M. O. Hengartner. The biochemistry of apoptosis. Nature 407:770–776 (2000).CrossRefPubMedGoogle Scholar
  47. 47.
    47. R. Mischak. Assessment of caspase activity; synthetic substrates and inhibitors. Bioconcepts 9.2:1–20 (2003).Google Scholar
  48. 48.
    48. G. J. Aune, T. Furuta, and Y. Pommier. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action. Anticancer Drugs 13:545–555 (2002).Google Scholar
  49. 49.
    49. H. F. Ding, Y. L. Lin, G. McGill, P. Juo, H. Zhu, J. Blenis, J. Yuan, and D. E. Fisher. Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J. Biol. Chem. 275:38905–38911 (2000).Google Scholar
  50. 50.
    50. M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, and U. M. Moll. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11:577–590 (2003). Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Sergey N. Fedorov
    • 1
  • Ann M. Bode
    • 1
  • Valentin A. Stonik
    • 2
  • Irina A. Gorshkova
    • 2
  • Patricia C. Schmid
    • 1
  • Oleg S. Radchenko
    • 2
  • Evgueni V. Berdyshev
    • 3
  • Zigang Dong
    • 1
    • 3
  1. 1.Hormel InstituteUniversity of MinnesotaAustinUSA
  2. 2.Pacific Institute of Bioorganic ChemistryVladivostokRussia
  3. 3.Division of Pulmonary and Critical Care MedicineJohns Hopkins University, Asthma and Allergy CenterBaltimoreUSA

Personalised recommendations