Pharmaceutical Research

, Volume 22, Issue 3, pp 427–439 | Cite as

Formulation and Evaluation of Aerosolized Celecoxib for the Treatment of Lung Cancer

  • Alfred Haynes
  • Madhu Sudhan Shaik
  • Abhijit Chatterjee
  • M. Singh
Research Papers

No Heading


We examined the effect of aerosolized celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on the in vitro cytotoxicity and apoptotic response of docetaxel against the human lung carcinoma cell lines A549 and H460.


A metered dose inhaler (MDI) formulation of celecoxib was prepared and evaluated for its medication delivery and aerodynamic properties. The in vitro cytotoxicity of the aerosolized celecoxib-MDI alone or in combination with docetaxel was assessed using a six-stage viable impactor by a previously established method. The induction of apoptosis was evaluated by morphologic examination (acridine orange and Hoechst staining) and DNA fragmentation. Furthermore, in an attempt to identify molecular targets involved in the anticancer mechanisms of celecoxib and docetaxel, we examined their effect on the expression of an array of markers involved in the COX-2 dependent a nd independent pathways.


The celecoxib-MDI had a medication delivery of 231.3 μg/shot, mass median aerodynamic diameter (MMAD) of 1.4 μm (GSD=1.9), and respirable fraction of 50.7%. The celecoxib-MDI (2 shots) in combination with docetaxel had cell kills as high as 81.3% and 67.7% in A549 and H460 cells, respectively. Hoechst and acridine orange staining showed an enhanced induction of apoptosis in A549 and H460 cells exposed to aerosolized celecoxib with docetaxel, which was further confirmed by DNA fragmentation. Western blot analysis showed a significant reduction in cPLA2 expression in both A549 and H460 cells treated with the combination of celecoxib with docetaxel. In the COX-2 independent pathway, there was a significant increase in the expression of PPAR-γ and p53, whereas pro-caspase-3 expression was significantly decreased, which may contribute to the enhanced apoptotic response observed with the combination treatment.


Our results suggest that aerosolized celecoxib significantly enhances the in vitro cytotoxicity and apoptotic response of docetaxel against A549 and H460 cells, and this enhanced activity is mediated via alterations in expression of various molecular targets involved in apoptosis.

Key Words:

napoptosis celecoxib cytotoxicity docetaxel inhalation 





cytosolic phospholipase A2


geometric standard deviation


hydrofluoroalkane; 5-LOX, 5-lipoxygenase


medication delivery device


metered dose inhaler


mass median aerodynamic diameter


nonsteroidal anti-inflammatory drug


non-small cell lung cancer


prostaglandin E2


peroxisome proliferator-activated receptor


tumor suppressor protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. D. N. Carney. Lung cancer-time to move on from chemotherapy. N. Engl. J. Med. 346126–128 (2002).Google Scholar
  2. 2.
    2. R. T. Greenlee, M. B. Hill-Harmon, T. Murray, and M. Thun. Cancer Statistics, 2001. CA Cancer J. Clin. 5115–36 (2001).Google Scholar
  3. 3.
    3. S. H. Landies, T. Murray, S. Bolden, and P. Wingo. Cancer statistics, 1998. CA Cancer J. Clin. 486–9 (1998).Google Scholar
  4. 4.
    4. C. F. Verschraegen, B. E. Gilbert, E. Loyer, A. Huaringa, G. Walsh, R. A. Newman, and V. Knight. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin. Cancer Res. 102319–2326 (2004).Google Scholar
  5. 5.
    5. P. J. Barnes. Inhaled glucocorticoids for asthma. N. Engl. J. Med. 332868–875 (1995).Google Scholar
  6. 6.
    6. M. Dolovich. Lung dose, distribution and clinical response to therapeutic aerosols. Aersol. Sci. Tech. 18230–240 (1993).Google Scholar
  7. 7.
    7. O. C. Trifan and T. Hla. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J. Cell. Mol. Med. 7207–222 (2003).Google Scholar
  8. 8.
    8. F. R. Khuri, H. Wu, J. J. Lee, B. L. Kemp, R. Lotan, S. M. Lippman, L. Feng, W. K. Hong, and X. C. Xu. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin. Cancer Res. 7861–867 (2001).Google Scholar
  9. 9.
    9. T. Hida, J. Leyton, A. N. Makheja, P. Ben-Av, T. Hla, A. Martinez, J. Mulshine, S. Malkani, P. Chung, and T. W. Moody. Non-small cell lung cancer cyclooxygenase activity and proliferation are inhibited by non-steroidal antiinflammatory drugs. Anticancer Res. 18775–782 (1998).Google Scholar
  10. 10.
    10. T. Hida, K.-I. Kozaki, H. Muramatsu, A. Masuda, S. Shimizu, T. Mitsudomi, T. Sugiura, M. Ogawa, and T. Takahasi. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin. Cancer Res. 62006–2011 (2000).Google Scholar
  11. 11.
    11. A. Haynes, M. S. Shaik, A. Chatterjee, and M. Singh. Evaluation of an aerosolized selective COX-2 inhibitor as a potentiator of doxorubicin in non-small cell lung cancer cell line. Pharm. Res. 201485–1495 (2003).Google Scholar
  12. 12.
    12. A. Gautam and N. Koshkin. Paclitaxel (taxol) and taxoid derivatives for lung cancer treatment: potential for aerosol delivery. Curr. Cancer Drug Targets 3287–296 (2003).Google Scholar
  13. 13.
    13. A. Gautam, J. C. Waldrep, C. L. Densmore, N. Koshkina, S. Melton, L. Roberts, B. Gilbert, and V. Knight. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther. 9353–357 (2002).Google Scholar
  14. 14.
    14. N. V. Koshkina, J. C. Waldrep, and V. Knight. Camptothecins and lung cancer: improved delivery systems by aerosol. Curr. Cancer Drug Targets 3251–264 (2003).Google Scholar
  15. 15.
    15. K. A. Lawson, K. Anderson, M. Menchaca, J. Atkinson, L. Sun, V. Knight, B. E. Gilbert, C. Conti, B. G. Sanders, and K. Kline. Novel vitamin E analogue decreases syngeneic mouse mammary tumor burden and reduces lung metastasis. Mol. Cancer Ther. 2437–444 (2003).Google Scholar
  16. 16.
    16. M. Kohlhaufl, K. Haussinger, F. Stanzel, A. Markus, J. Tritschler, A. Muhlhofer, A. Morresi-Hauf, I. Golly, G. Scheuch, B. H. Jany, and H. K. Biesalski. Inhalation of aerosolized vitamin a: reversibility of metaplasia and dysplasia of human respiratory epithelia-a prospective pilot study. Eur. J. Med. Res. 772–78 (2002).Google Scholar
  17. 17.
    17. R. D. Estensen, M. M. Jordan, T. S. Wiedman, A. R. Galbraith, and L. W. Wattenberg. Effect of chemopreventive agents on separate stages of progression of benzo[alpha] pyrene induced lung tumors in A/J mice. Carcinogenesis 25197–201 (2004).Google Scholar
  18. 18.
    18. M. S. Shaik, A. Haynes, J. McSween, O. Ikediobi, N. Kanikkannan, and M. Singh. Inhalation delivery of anticancer agents via HFA-based metered dose inhalers using methotrexate as a model drug. J. Aerosol Med. 15261–270 (2002).Google Scholar
  19. 19.
    19. F. Soriano, B. Helfrich, D. C. Chan, L. E. Heasley, P. A. Bunn Jr., and T. C. Chou. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res. 596178–6184 (1999).Google Scholar
  20. 20.
    20. T. Hida, K.-I. Kozaki, H. Ito, O. Miyaishi, Y. Tatematsu, T. Suzuki, K. Matsuo, T. Sugiura, M. Ogawa, T. Takahashi, and T. Takahashi. Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase-2 inhibitor, JTE-522 and conventional anticancer agents. Clin. Cancer Res. 82443–2447 (2002).Google Scholar
  21. 21.
    21. A. D. Brooks, W. Tong, F. Benedetti, Y. Kaneda, V. Miller, and R. P. Warrell Jr. Inhaled aerosolization of all-trans-retinoic acid for targeted pulmonary delivery. Cancer Chemother. Pharmacol. 46313–318 (2000).Google Scholar
  22. 22.
    22. P. A. Dickinson, P. C. Seville, H. McHale, N. C. Perkins, and G. Taylor. An investigation of the solubility of various compounds in the hydrofluoroalkane propellants and possible model liquid propellants. J. Aerosol Med. 13179–186 (2000).Google Scholar
  23. 23.
    23. C. L. Leach. Improved delivery of inhaled steroids to the large and small airways. Respir. Med. 923–8 (1998).Google Scholar
  24. 24.
    24. H. C. Chang and C. F. Weng. Cyclooxygenase-2 level and culture conditions influence NS398-induced apoptosis and caspase activation in lung cancer cells. Oncol. Rep. 81321–1325 (2001).Google Scholar
  25. 25.
    25. C. Waskewich, R. D. Blumenthal, H. Li, R. Stein, D. M. Goldenberg, and J. Burton. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of cox-2 negative hematopoietic and epithelial cell lines. Cancer Res. 622029–2033 (2002).Google Scholar
  26. 26.
    26. C. P. Duffy, C. J. Elliott, R. A. O’Connor, M. M. Heenan, S. Coyle, I. M. Cleary, K. Kavanagh, S. Verhaegen, C. M. O’Loughlin, R. NicAmhlaoibh, and M. Clynes. Enhancement of chemotherapeutic drug toxicity to human tumor cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). Eur. J. Cancer 341250–1259 (1998).Google Scholar
  27. 27.
    27. A. M. Meyer, L. D. Dwyer-Nield, G. J. Hurteau, R. L. Keith, E. O’Leary, M. You, J. V. Bonventre, R. A. Nemenoff, and A. M. Malkinson. Decreased lung tumorigenesis in mice genetically deficient in cytosolic phospholipase A2. Carcinogenesis 25:1517–1524 (2004).Google Scholar
  28. 28.
    28. T. Shimizu, T. Izumi, Y. Seyama, K. Tadokoro, O. Radmark, and B. Samuelsson. Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc. Natl. Acad. Sci. USA 83:4175–4179 (1986).Google Scholar
  29. 29.
    29. I. Shureiqi and S.M. Lippman. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res. 61:6307–6312 (2001).Google Scholar
  30. 30.
    30. S. Ikemoto, K. Sugimura, K. Kuratukuri, and T. Nakatani. Anti-tumor effects of lipoxygenase inhibitors on murine bladder cancer cell line (MBT-2). Anticancer Res. 24:733–736 (2004).Google Scholar
  31. 31.
    31. M. V. Swamy, C. R. Herzog, and C. V. Rao. Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res. 63:5239–5242 (2003).Google Scholar
  32. 32.
    32. T. A. Chan, P. J. Morin, B. Vogelstein, and K. W. Kinzler. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc. Natl. Acad. Sci. USA 95:681–686 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Alfred Haynes
    • 1
  • Madhu Sudhan Shaik
    • 1
  • Abhijit Chatterjee
    • 1
  • M. Singh
    • 1
  1. 1.College of Pharmacy and Pharmaceutical SciencesFlorida A&M UniversityTallahassee, Florida

Personalised recommendations