Advertisement

Pharmaceutical Research

, Volume 22, Issue 3, pp 347–355 | Cite as

Intravenous Hydrophobic Drug Delivery: A Porous Particle Formulation of Paclitaxel (AI-850)

  • Julie A. Straub
  • Donald E. Chickering
  • Jonathan C. Lovely
  • Huimin Zhang
  • Bhavdeep Shah
  • William R. Waud
  • Howard Bernstein
Research Papers

No Heading

Purpose.

To develop a rapidly dissolving porous particle formulation of paclitaxel without Cremophor EL that is appropriate for quick intravenous administration.

Methods.

A rapidly dissolving porous particle formulation of paclitaxel (AI-850) was created using spray drying. AI-850 was compared to Taxol following intravenous administration in a rat pharmacokinetic study, a rat tissue distribution study, and a human xenograft mammary tumor (MDA-MB-435) model in nude mice.

Results.

The volume of distribution and clearance for paclitaxel following intravenous bolus administration of AI-850 were 7-fold and 4-fold greater, respectively, than following intravenous bolus administration of Taxol. There were no significant differences between AI-850 and Taxol in tissue concentrations and tissue area under the curve (AUC) for the tissues examined. Nude mice implanted with mammary tumors showed improved tolerance of AI-850, enabling higher administrable does of paclitaxel, which resulted in improved efficacy as compared to Taxol administered at its maximum tolerated dose (MTD).

Conclusions.

The pharmacokinetic data indicate that paclitaxel in AI-850 has more rapid partitioning from the bloodstream into the tissue compartments than paclitaxel in Taxol. AI-850, administered as an intravenous injection, has been shown to have improved tolerance in rats and mice and improved efficacy in a tumor model in mice when compared to Taxol.

Key Words:

drug delivery hydrophobic drugs microparticles paclitaxel spray drying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S. N. Pace, G. W. Pace, I. Parikh, and A. K. Mishra. Novel injectable formulations of insoluble drugs. Pharm. Technol. 23:116–134 (1999).Google Scholar
  2. 2.
    2. M. Hite, S. Turner, and C. Federici. Part 1: Oral delivery of poorly soluble drugs. Pharm. Manuf. Packing Sourcer Autumn:38–40 (2003).Google Scholar
  3. 3.
    3. C. Lipinski. Poor aqueous solubility – an industry wide problem in drug discovery. Am. Pharm. Rev. 5:82–85 (2002).Google Scholar
  4. 4.
    4. R. T. Liggins, W. L. Hunger, and H. M. Burt. Solid-state characterization of paclitaxel. J. Pharm. Sci. 86:1458–1463 (1997).Google Scholar
  5. 5.
    5. L. van Zulen, J. Verweij, and A. Sparreboom. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 19:125–141 (2001).Google Scholar
  6. 6.
    6. E. K. Rowinsky. The taxanes: dosing and scheduling considerations. Oncology 11(Suppl.):7–19 (1997).Google Scholar
  7. 7.
    7. F. A. Greco and T. M. Hainsworth. One-hour paclitaxel infusions: a review of safety and efficacy. Cancer J. Sci. Am. 5:179–191 (1999).Google Scholar
  8. 8.
    8. E. K. Rowinsky and R. C. Donehower. Paclitaxel (Taxol). N. Engl. J. Med. 332:1004–1014 (1995).Google Scholar
  9. 9.
    9. E. K. Rowinsky. Paclitaxel pharmacology and other tumor types. Semin. Oncol. 24:S19-1–S19-12 (1997).Google Scholar
  10. 10.
    10. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179–192 (2002).Google Scholar
  11. 11.
    11. S. Nuijen, M. Bouma, J. H. Schellens, and J. H. Beijnen. Progress in the development of alternative pharmaceutical formulations of taxanes. Invest. New Drugs. 19:143–153 (2001).Google Scholar
  12. 12.
    12. R. Pawar, A. Shikanov, B. Vaisman, and A. J. Domb. Intravenous and regional paclitaxel formulations. Curr. Med. Chem. 11:397–402 (2004).Google Scholar
  13. 13.
    13. S. S. Feng, L. Mu, K. Y. Win, and G. Huang. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem. 11:413–424 (2004).Google Scholar
  14. 14.
    14. N. K. Ibrahim, N. Desai, S. Legha, P. Soon-Shiong, R. L. Theriault, E. Rivera, B. Esmaeli, S. E. Ring, A. Bedikian, G. N. Hortobagyi, and J. A. Ellerhorst. Phase I and pharmacokinetic study of ABI-007, a Cremaphor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8:1038–1044 (2002).Google Scholar
  15. 15.
    15. T. Y. Kim, D. W. Kim, J. W. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang. Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–3716 (2004).Google Scholar
  16. 16.
    16. P. P. Constantinides, A. Tustian, and D. R. Kessler. Tocol emulsions for drug solubilization and parenteral delivery. Adv. Drug Deliv. Rev. 56:1243–1255 (2004).Google Scholar
  17. 17.
    17. O. Soepenberg, A. Sparreboom, M. J. de Jonge, A. S. Planting, G. de Heus, W. J. Loos, C. M. Hartman, C. Bowden, and J. Verweij. Real-time pharmacokinetics guiding clinical decisions; phase I study of a weekly schedule of liposome encapsulated paclitaxel in patients with solid tumors. Eur. J. Cancer 40:681–688 (2004).Google Scholar
  18. 18.
    18. S. Streith, M. E. Eichhorn, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, and M. Dellian. Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int. J. Cancer 111:117–124 (2004).Google Scholar
  19. 19.
    19. W. R. Perkins, I. Ahmad, X Li, D. J. Hirsh, G. R. Masters, C. J. Fecko, S. Ali, J. Nguyen, J. Schupsky, C. Herbert, A. S. Janoff, and E. Mayhew. Novel therapeutic non-particles (lipocores): trapping poorly water soluble compounds. Int. J. Pharm. 200:27–39 (2001).Google Scholar
  20. 20.
    20. E. Harper, W. Dang, R. G. Lapidus, and R. I. Garver. Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local-regional therapy of lung cancer tumor nodules in mice. Clin. Cancer Res. 5:4242–4248 (1999).Google Scholar
  21. 21.
    21. L. Mu and S. S. Feng. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Rel. 76:239–254 (2001).Google Scholar
  22. 22.
    22. J. A. Straub, E. Mathiowitz, H. Bernstein, H. T. Brush, and R. E. Wing. Method for making porous microparticles by spray drying. Acusphere, Inc. U.S. Patent No. 5,853,698 (1998).Google Scholar
  23. 23.
    23. J. Straub, H. Bernstein, D. E. Chickering, S. Khattak, and G. Randall. Porous drug matrices and methods of manufacture thereof. Acusphere, Inc. U.S. Patent No. 6,395,300 (2002).Google Scholar
  24. 24.
    24. J. Straub, H. Bernstein, D. E. Chickering, S. Khattak, and G. Randall. Porous paclitaxel matrices and methods of manufacture thereof. Acusphere, Inc.. U.S. Patent No. 6,610,317 (2003).Google Scholar
  25. 25.
    25. J. Straub, H. Bernstein, D. E. Chickering, and G. Randall. Porous celecoxib matrices and methods of manufacture thereof. Acusphere, Inc. U.S. Patent No. 6,589,557 (2003).Google Scholar
  26. 26.
    26. J. Plowman, D. J. Dykes, M. Hollingshead, L. Simpson-Herren, and M. C. Alley. Human tumor xenograft models in NCI drug development. In B. A. Teicher (eds.), Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, Humana Press, Totowa, NJ, 1997, pp. 101–125.Google Scholar
  27. 27.
    27. Data on file with Southern Research Institute, Birmingham, AL, USA.Google Scholar
  28. 28.
    28. C. M. Spenser and D. Faulds. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48:794–847 (1994).Google Scholar
  29. 29.
    29. C. M. Kearns. Pharmacokinetics of the taxanes. Pharmacotherapy 17:105S–109S (1997).Google Scholar
  30. 30.
    30. L. van Zuylen, M. O. Karlsson, J. Verweij, E. Brouwer, P. de Bruijn, K. Nooter, G. Stoter, and A. Sparreboom. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother. Pharmacol. 47:309–318 (2001).Google Scholar
  31. 31.
    31. A. Sparreboom and J. Verweij. Paclitaxel pharmacokinetics, threshold models and dosing strategies. J. Clin. Oncol. 21:2804–2805 (2003).Google Scholar
  32. 32.
    32. L. Gianni, C. M. Kearns, G. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna, and M. J. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13:180–190 (1995).Google Scholar
  33. 33.
    33. A. Sparreboom, O. van Telligen, W. J. Nooijen, and J. H. Beijnen. Tissue distribution, metabolism and excretion of paclitaxel in mice. Anticancer Drugs 7:78–86 (1996).Google Scholar
  34. 34.
    34. A. Sparreboom, O. van Telligen, W. J. Nooijen, and J. H. Beijnen. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res. 56:2112–2115 (1996).Google Scholar
  35. 35.
    35. L. Brannon-Peppas and J. O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56:1649–1659 (2004).Google Scholar
  36. 36.
    36. K. Ogawara, K. Higaki, and T. Kimura. Major determinants in hepatic disposition of polystyrene nanospheres: implication for rational design of particulate drug carriers. Crit. Rev. Ther. Drug Carrier Syst. 19:277–306 (2002).Google Scholar
  37. 37.
    37. S. S. Davis and L. Illum. Polymeric microspheres as drug carriers. Biomaterials 9:111–115 (1988).Google Scholar
  38. 38.
    38. N. Oku and Y. Namba. Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst. 11:231–270 (1994).Google Scholar
  39. 39.
    39. T. Sakaeda and K. Hirano. Effect of composition on biological fate of oil particles after intravenous injection of o/w lipid emulsions. J. Drug Target. 6:273–284 (1998).Google Scholar
  40. 40.
    40. A. J. Olsanski, L. D. Lewis, C. Mita, R. C. Walovitch, R. P. Perez, D. P. Tuck, and E. K. Rowinsky. Phase 1 and pharmacokinetic study of AI-850, a novel microparticle hydrophobic drug delivery system (HDDS) for paclitaxel. J. Clin. Oncol. 22(Suppl.):2048 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Julie A. Straub
    • 1
  • Donald E. Chickering
    • 1
  • Jonathan C. Lovely
    • 1
  • Huimin Zhang
    • 1
  • Bhavdeep Shah
    • 1
  • William R. Waud
    • 2
  • Howard Bernstein
    • 1
  1. 1.TAcusphere, Inc.Watertown, Massachusetts
  2. 2.Southern Research InstituteBirmingham, Alabama

Personalised recommendations