Pharmaceutical Research

, Volume 22, Issue 2, pp 228–234 | Cite as

Altered Pharmacokinetics of Paclitaxel in Experimental Hepatic or Renal Failure

  • Mari Jiko
  • Ikuko Yano
  • Masahiro Okuda
  • Ken-ichi Inui
Research Papers

No Heading


The aim of this study was to investigate the effect of hepatic or renal insufficiency on the pharmacokinetics of paclitaxel in rats.


Rats were treated with carbon tetrachloride (CCl4; 0.5 ml/kg) to induce hepatic failure or were subjected to 5/6 nephrectomy (5/6 Nx) to induce renal failure. Paclitaxel (3 mg/kg) was administered intravenously or intraportally. Testosterone 6β-hydroxylase activity, which is a marker of CYP3A activity, was measured in rat liver microsomes from CCl4-treated or 5/6 Nx rats.


After paclitaxel was administered intravenously, total body clearance was significantly reduced by 73% and 34% relative to each control value in CCl4-treated and 5/6 Nx rats, respectively (control, 1.82 ± 0.42 vs. CCl4-treated, 0.49 ± 0.11; sham, 1.54 ± 0.07 vs. 5/6 Nx, 1.01 ± 0.12 L h−1 kg−1; mean ± SE, n = 5 to 6). Testosterone 6β-hydroxylase activity was reduced by 92% and 59% relative to each control value in rat liver microsomes from CCl4-treated and 5/6 Nx rats, respectively. After the intraportal administration of paclitaxel, apparent clearance was reduced by 85% relative to control value in rats with hepatic failure, while that in rats with renal failure was the same as the reduction in systemic clearance.


These results suggested that not only hepatic failure but also renal failure could modify the pharmacokinetics of paclitaxel in vivo.

Key words:

hepatic failure 5/6 nephrectomy paclitaxel pharmacokinetics renal failure 



area under the plasma concentration-time curve


high-performance liquid chromatography

5/6 Nx

5/6 nephrectomy


Michaelis-Menten constant


maximum velocity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. E. K. Rowinsky and R. C. Donehower. Paclitaxel (Taxol). N. Engl. J. Med. 332:1004–1014 (1995).Google Scholar
  2. 2.
    2. D. S. Sonnichsen, Q. Liu, E. G. Schuetz, J. D. Schuetz, A. Pappo, and M. V. Relling. Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmcol. Exp. Ther. 275:566–575 (1995).Google Scholar
  3. 3.
    3. D. S. Sonnichsen and M. V. Relling. Clinical pharmacokinetics of paclitaxel. Clin. Pharmacokinet. 27:256–269 (1994).Google Scholar
  4. 4.
    4. L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Viganó, A.Locatelli, G. Bonadonna, and M. J. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/ pharmacodynamic relationships in humans. J. Clin. Oncol. 13: 180–190 (1995).Google Scholar
  5. 5.
    5. T. Ohtsu, Y. Sasaki, T. Tamura, Y. Miyata, H. Nakanomyo, Y. Nishiwaki, and N. Saijo. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin. Cancer Res. 1:599–606 (1995).Google Scholar
  6. 6.
    6. M. T. Huizing, G. Giaccone, L. J. C. van Warmerdam, H. Rosing, P. J. M. Bakker, J. B. Vermorken, P. E. Postmus, N. van Zandwijk, M. G. J. Koolen, W. W. ten Bokkel-Huinink, W. J. F. van der Vijg, F. J. Bierhorst, A. Lai, O. Dalesio, H. M. Pinedo, C. H. N. Veenhof, and J. H. Beijnen. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. J. Clin. Oncol. 15:317– 329 (1997).Google Scholar
  7. 7.
    7. V. Rodighiero. Effects of liver disease on pharmacokinetics. An update. Clin. Pharmacokinet. 37:399–431 (1999).Google Scholar
  8. 8.
    8. M.-C. Bastien, F. Leblond, V. Pichette, and J.-P. Villeneuve. Differential alteration of cytochrome P450 isozymes in two experimental models of cirrhosis. Can. J. Physiol. Pharmacol. 78:912– 919 (2000).Google Scholar
  9. 9.
    9. V. R. N. Panday, M. T. Huizing, P. H. B. Willemse, A. De-Graeff, W. W. ten Bokkel-Huinink, J. B. Vermorken, and J. H. Beijnen. Hepatic metabolism of paclitaxel and its impact in patients with altered hepatic function. Semin. Oncol. 24:34–38 (1997).Google Scholar
  10. 10.
    10. R. Bruno, R. Olivares, J. Berille, P. Chaikin, N. Vivier, L. Hammershaimb, G. R. Rhodes, and J. R. Rigas. α-1-Acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin. Cancer Res. 9:1077–1082 (2003).Google Scholar
  11. 11.
    11. T. P. Gibson. Influence of renal disease on pharmacokinetics. In W. E. Evans, L. J. Schentag, and W. J. Jusko (eds.), Applied Pharmacokinetics, 2nd ed, Applied Therapeutics, Washington, DC, 1986, pp. 83–115Google Scholar
  12. 12.
    12. F. A. Leblond, L. Giroux, J.-P. Villeneuve, and V. Pichette. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab. Dispos. 28:1317–1320 (2000).Google Scholar
  13. 13.
    13. T. C. Dowling, A. E. Briglia, J. C. Fink, D. S. Hanes, P. D. Light, L. Stackiewicz, C. S. Karyekar, N. D. Eddington, M. R. Weir, and W. L. Henrich. Characterization of hepatic cytochrome P4503A activity in patients with end-stage renal disease. Clin. Pharmacol. Ther. 73:427–434 (2003).Google Scholar
  14. 14.
    14. S.-S. Hong, S.-J. Chung, and C.-K. Shim. Functional impairment of sinusoidal membrane transport of organic cations in rats with CCl4-induced hepatic failure. Pharm. Res. 17:833–838 (2000).Google Scholar
  15. 15.
    15. L. Ji, S. Masuda, H. Saito, and K. Inui. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 62:514–524 (2002).Google Scholar
  16. 16.
    16. M. Sugiura, K. Iwasaki, H. Noguchi, and R. Kato. Evidence for the involvement of cytochrome P-450 in tiaramide N-oxide reduction. Life Sci. 15:1433–1442 (1974).Google Scholar
  17. 17.
    17. R. W. Wang, D. J. Newton, T. D. Scheri, and A. Y. H. Lu. Human cytochrome P450 3A4-catalyzed testosterone 6β-hydroxylation and erythromycin N-demethylation. Drug Metab. Dispos. 25:502– 507 (1997).Google Scholar
  18. 18.
    18. T. Iwahori, T. Matsuura, H. Maehashi, K. Sugo, M. Saito, M. Hosokawa, K. Chiba, T. Masaki, H. Aizaki, K. Ohkawa, and T. Suzuki. CYP3A4 inducible model for in vitro analysis of human drug metabolism using a bioartificial liver. Hepatology 37:665– 673 (2003).Google Scholar
  19. 19.
    19. T. A. Willey, E. J. Bekos, R. C. Gaver, G. F. Duncan, L. K. Tay, J. H. Beijnen, and R. H. Farmen. High-performance liquid chromatographic procedure for the quantitative determination of paclitaxel (Taxol®) in human plasma. J. Chromatogr. 621:231–238 (1993).Google Scholar
  20. 20.
    20. J.-S. Choi. Pharmacokinetics of paclitaxel in rabbits with carbon tetrachloride-induced hepatic failure. Arch. Pharm. Res. 25:937– 977 (2002).Google Scholar
  21. 21.
    21. H. Okabe, I. Yano, Y. Hashimoto, H. Saito, and K. Inui. Evaluation of increased bioavailability of tacrolimus in rats with experimental renal dysfunction. J. Pharm. Pharmacol. 54:65–70 (2002).Google Scholar
  22. 22.
    22. C. D. Anderson, J. Wang, G. N. Kumar, J. M. Mcmillan, U. K. Walle, and T. Walle. Dexamethasone induction of taxol metabolism in the rat. Drug Metab. Dispos. 23:1286–1290 (1995).Google Scholar
  23. 23.
    23. H. Okabe, M. Hasunuma, and Y. Hashimoto. The hepatic and intestinal metabolic activities of P450 in rats with surgery- and drug-induced renal dysfunction. Pharm. Res. 20:1591–1594 (2003).Google Scholar
  24. 24.
    24. A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. F. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031–2035 (1997).Google Scholar
  25. 25.
    25. M. R. Feng, J. Loo, and J. Wright. Disposition of the antipsychotic agent CI-1007 in rats, monkeys, dogs, and human cytochrome P450 2D6 extensive metabolizers. Drug Metab. Dispos. 26:982–988 (1998).Google Scholar
  26. 26.
    26. M. Gibaldi and D. Perrier. Clearance concepts. In M. Gibaldi and D. Perrier (eds.), Pharmacokinetics, Marcel Dekker, New York, 1982, pp. 319–353.Google Scholar
  27. 27.
    27. R. Vanholder, N. van Landschoot, R. De-Smet, A. Schoots, and S. Ringoir. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney Int. 33:996–1004 (1988).Google Scholar
  28. 28.
    28. R. Gugler, D. W. Shoeman, D. H. Huffman, J. B. Cohlmia, and D. L. Azarnoff. Pharmacokinetics of drugs in patients with the nephrotic syndrome. J. Clin. Invest. 55:1182–1189 (1975).Google Scholar
  29. 29.
    29. G. N. Kumar, U. K. Walle, K. N. Bhalla, and T. Walle. Binding of taxol to human plasma, albumin and α1-acid glycoprotein. Res. Commun. Chem. Pathol. Pharmacol. 80:337–344 (1993).Google Scholar
  30. 30.
    30. H. J. G. D. van den Bongard, E. M. Kemper, O. van Tellingen, H. Rosing, R. A. A. Mathôt, J. H. M. Schellens, and J. H. Beijnen. Development and validation of a method to determine the unbound paclitaxel fraction in human plasma. Anal. Biochem. 324: 11–15 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Mari Jiko
    • 1
  • Ikuko Yano
    • 1
  • Masahiro Okuda
    • 1
  • Ken-ichi Inui
    • 1
  1. 1.Department of Pharmacy, Kyoto University Hospital, Faculty of MedicineKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations