Lovastatin Production from Aspergillus Terreus ATCC 20542 Under Various Vegetable Oils Used as Sole and Supplementary Carbon Sources

The effect of vegetable oils used as sole and supplementary carbon sources on the production of lovastatin by Aspergillus terreus ATCC 20542 and their biomass in submerged fermentation has been examined. Eleven different types of edible vegetable oils were tested including camellia tea oil, canola oil, coconut oil, corn oil, olive oil, palm olein oil, rice bean oil, safflower oil, sesame oil, soybean oil, and sunflower oil. All selected oils can improve the yield of target product at least 2 times. The maximum yield was 87.18 g/L with supplementary 1% w/v coconut oil, which was about 11 times higher than that obtained from the oil-free control. Fungal biomass was proportional to vegetable oil concentration, but an excessive concentration of oil resulted in a lower yield. Substitutions of coconut oil and soybean oil at any quantities for lactose used as sole carbon source showed very low concentrations of lovastatin. These findings indicate that vegetable oils can be used for supporting fungal growth more than the secondary metabolite production. It can be concluded that easily available vegetable oil is a very promising adjuvant for lovastatin production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. Endo, Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci., 86(5), 484 – 493 (2010).

    CAS  Google Scholar 

  2. 2.

    A. W. Alberts, J. Chen, G. Kuron, et al., Proc. Natl. Acad. Sci. USA., 77(7), 3957 – 3961 (1980).

    CAS  PubMed  Google Scholar 

  3. 3.

    M. Manzoni and M. Rollini, Appl. Microbiol. Biotechnol., 58(5), 555 – 564 (2002).

    CAS  PubMed  Google Scholar 

  4. 4.

    A. W. Alberts, Cardiology, 77(4), 14 – 21 (1990).

    PubMed  Google Scholar 

  5. 5.

    L. S. T. Lai, C. C. Pan, and B. K. Tzeng, Process Biochem., 38(9), 1317 – 1326 (2003).

    CAS  Google Scholar 

  6. 6.

    J. L. Casas Lopez, J. A. Sanchez Perez, J. M. Fernandez Sevilla, et al., Enzyme Microb. Technol., 33(2–3), 270 – 277 (2003).

    CAS  Google Scholar 

  7. 7.

    J. L. Casas Lopez, J. A. Sanchez Perez, J. M. Fernandez Sevilla, et al., J. Chem. Technol. Biotechnol., 79(10), 1119 – 1126 (2004).

    Google Scholar 

  8. 8.

    E. M. Rodriguez Porcel, J. L. Casas Lopez, M. A. Vilches Ferron, et al., Bioprocess Biosyst. Eng., 29(1), 1 – 5 (2006).

    PubMed  Google Scholar 

  9. 9.

    M. Bizukojc, B. Pawlowska, S. Ledakowicz, J. Biotechnol., 127(2), 258 – 268 (2007).

    CAS  PubMed  Google Scholar 

  10. 10.

    L. S. T. Lai, C. S. Hung, and C. C. Lo, J. Biosci. Bioeng., 104(1), 9 – 13 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    P. Sripalakit, J. Riunkesorn, and A. Saraphanchotiwitthaya, Maejo Int. J. Sci. Technol., 5(2), 231 – 40 (2011).

    CAS  Google Scholar 

  12. 12.

    T. Boruta, and M. Bizukojc, Appl. Microbiol. Biotechnol., 100(7), 3009 – 3022 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    M. H. A. Rahim, H. H. Harith, A. Montoya, et al., Biocatal. Agric. Biotechnol., 10, 379 – 385 (2017).

    Google Scholar 

  14. 14.

    L. S. T. Lai, T. H. Tsai, T. C. Wang, et al., Enzyme Microb. Technol.,36(5–6), 737 – 748 (2005).

    CAS  Google Scholar 

  15. 15.

    M. Bizukojc, M. Pawlak, T. Boruta, et al., J. Biotechnol., 162(2–3), 253 – 261 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    E. M. Rodriguez Porcel, J. L. Casas Lopez, J. A. Sanchez Perez, et al., J. Chem. Technol. Biotechnol.,82(1), 58 – 64 (2007).

    Google Scholar 

  17. 17.

    P. L. Wei, Z. N. Xu, and P. L. Cen, J. Zhejiang Univ. Sci. A, 8(9), 1521 – 1526 (2007).

    CAS  Google Scholar 

  18. 18.

    E. M. Rodriguez Porcel, J. L. Casas Lopez, J. A. Sanchez Perez, et al., J. Chem. Technol. Biotechnol.,83(9), 1236 – 1243 (2008).

    Google Scholar 

  19. 19.

    N. Novak, S. Gerdin, and M. Berovic, Biolechnol. Lett., 19(10), 947 – 948 (1997).

    CAS  Google Scholar 

  20. 20.

    H. Hajjaj, P. Niederberger, and P. Dubac, Appl. Environ. Microbiol., 67(6), 2596 – 2602 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    M. F. Jahromi, J. B. Liang, Y. W. Ho, et al., J. Biomed. Biotechnol., 2012, e196264 (2012).

    Google Scholar 

  22. 22.

    G. Szakacs, G. Morovjan, and R. P. Tengerdy, Biotechnol. Lett., 20(4), 411 – 415 (1998).

    CAS  Google Scholar 

  23. 23.

    M. S. Kumar, S. K. Jana, V. Senthil, et al., Process Biochem., 36(4), 363 – 368 (2000).

    CAS  Google Scholar 

  24. 24.

    J. G. Banos, A. Tomasini, G. Szakacs, and J. Barrios-González, J. Biosci. Bioeng., 108(2), 105 – 110 (2009).

    CAS  PubMed  Google Scholar 

  25. 25.

    Z. Jia, X. Zhang, and X. Cao, Asia-Pac. J. Chem. Eng., 4(5), 672 – 677 (2009).

    CAS  Google Scholar 

  26. 26.

    C. Karthika, G. Sharmali, M. Muthukumaran, et al., Food Sci. Biotechnol., 22(5), 1335 – 1341 (2013).

    Google Scholar 

  27. 27.

    P. V. Kamath, B. S. Dwarakanath, A. Chaudhary, et al., HAYATI J. Biosci., 22(4), 174 – 180 (2015).

    Google Scholar 

  28. 28.

    M. Azeem, Y. Saleem, Z. Hussain, et al., Pharm. Chem. J., 52(3), 284 – 289 (2018).

    CAS  Google Scholar 

  29. 29.

    M. A. Vilches Ferron, J. L. Casas Lopez, J. A. Sanchez Perez, et al.,World J. Microbiol. Biotechnol., 21(2), 123 – 125 (2005).

    CAS  Google Scholar 

  30. 30.

    H. Hasan, M. H. A. Rahim, L. Campbell, et al., Nat. Biotechnol., 44, 64 – 71 (2018).

    CAS  Google Scholar 

  31. 31.

    H. R. Valera, J. Gomes, S. Lakshmi, et al, Enzyme Microb. Technol., 37(5), 521 – 526 (2005).

    CAS  Google Scholar 

  32. 32.

    R. Dhar, G. B. Choudhury, and V. K. Nigam, Asian J. Biomed. Pharm. Sci., 5(44), 24 – 29 (2015).

    CAS  Google Scholar 

  33. 33.

    S. M. Ouda, S. A. Gabr, N. A. Younis, et al, Res. J. Pharm. Biol. Chem. Sci., 6(5), 1439 – 1448 (2015).

    CAS  Google Scholar 

  34. 34.

    Y. S. Park, I. Momose, K. Tsunoda, et al., Appl. Microb. Biotechnol., 40(6), 773 – 779 (1994).

    CAS  Google Scholar 

  35. 35.

    S. C. A. Ortiz, C. O. Hokka, and A. C. Badino, Enzyme Microb. Technol., 40(5), 1071 – 1077 (2007).

    CAS  Google Scholar 

  36. 36.

    D. B. Choi, S. S. Park, B. K. Ahn, et al, Process Biochem., 43(8), 835 – 841 (2008).

    CAS  Google Scholar 

  37. 37.

    A. M. Jones and M. A. Porter, J. Ind. Microbiol. Biotechnol., 21(4–5), 203 – 207 (1998).

    CAS  Google Scholar 

  38. 38.

    J. Hamedi, F. Malekzadeh, and A. E. Saghafi-nia, J. Ind. Microbiol. Biotechnol., 31(10), 447 – 456 (2004).

    CAS  PubMed  Google Scholar 

  39. 39.

    J. H. Kim, J. S. Lim, and S. W. Kim, Biotechnol. Bioprocess Eng., 9(6), 459 – 464 (2004).

    CAS  Google Scholar 

  40. 40.

    G. L. Maranesi, A. Baptista-Neto, C. O. Hokka, et al., World J. Microbiol. Biotechnol., 21(4), 509 – 514 (2005).

    CAS  Google Scholar 

  41. 41.

    R. Aparicio and R. Aparicio-Ruiz, J. Chromatogr. A, 881(1–2), 93 – 104 (2000).

    CAS  PubMed  Google Scholar 

  42. 42.

    F. Sorrentino, I. Roy, and T. Keshavarz, Appl. Microbiol. Biotechnol., 88(1), 65 – 73 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    V. Dubois, S. Breton, M. Linder, et al., Eur. J. Lipid. Sci. Technol., 109(7), 710 – 732 (2007).

    CAS  Google Scholar 

  44. 44.

    B. K. Sethi, P. K. Nanda, and S. Sahoo, Braz. J. Microbiol., 47(1), 143 – 147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    S. Goswami, A. S. Vidyarthi, B. Bhunia, et al., J. Biochem. Technol., 4(1), 581 – 587 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Miss Janya Riunkesorn for her assistance. This study was financially supported by the National Research Council of Thailand (NRCT) and the Research Funds from Government Budget, Naresuan University, Thailand (grant number. R2554B058).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pattana Sripalakit.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sripalakit, P., Saraphanchotiwitthaya, A. Lovastatin Production from Aspergillus Terreus ATCC 20542 Under Various Vegetable Oils Used as Sole and Supplementary Carbon Sources. Pharm Chem J 54, 302–309 (2020). https://doi.org/10.1007/s11094-020-02195-x

Download citation

Keywords

  • lovastatin
  • Aspergillus terreus
  • vegetable oils
  • fermentation
  • carbon source