Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 3, pp 231–235 | Cite as

Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties

  • A. A. Nikitin
  • M. A. Khramtsov
  • A. G. Savchenko
  • M. A. Abakumov
  • A. G. Mazhuga
DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • 52 Downloads

The scientific and technical literature addressing the synthesis of anisotropic iron-oxide nanoparticles of various shapes (cubic, rod-like, clustered, etc.) sized from 10 to 100 nm and their application for diagnostic magnetic resonance imaging (MRI) of tissues and organs is analyzed. The analysis indicates that the nanoparticle shape, size, and surface chemistry affect considerably relaxation parameters T1 and T2. Thus, cubic iron-oxide nanoparticles had the greatest T2 values. Furthermore, rod-like and octapodal nanoparticles also exhibit rather high T2 values so that they can be used as contrast agents for diagnostic MRI.

Keywords

nanoparticles iron-oxide nanoparticles magnetite magnetic resonance imaging MRI contrast agents 

Notes

Acknowledgments

The work was financially supported by the Ministry of Education and Science of the Russian Federation [14.578.21.0201, RFMEFI57816X0201].

References

  1. 1.
    U. Jeong, X. W. Teng, Y. Wang, et al., Adv. Mater., 19, 33 – 60 (2007).CrossRefGoogle Scholar
  2. 2.
    C. J. Xu and S. H. Sun, Polym. Int., 56, 821 – 826 (2007).CrossRefGoogle Scholar
  3. 3.
    A. K. Gupta and M. Gupta, Biomaterials, 26, 3995 – 4021 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    A.-H. Lu, E. L. Salabas, and F. Schuth, Angew. Chem., Int. Ed., 46, 1222 – 1244 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Chen, J. Kim, J. P. Liu, et al., J. Am. Chem. Soc., 128, 7132 – 7133 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    J. T. Jang, H. Nah, J. H. Lee, et al., Angew. Chem., Int. Ed., 48(7), 1234 – 1238 (2009).CrossRefGoogle Scholar
  7. 7.
    N. Lee and T. Hyeon, Chem. Soc. Rev., 41, 2575 – 2589 (2012).CrossRefPubMedGoogle Scholar
  8. 8.
    B. E. Kashevsky, S. B. Kashevsky, V. S. Korenkov, et al., J. Magn. Magn. Mater., 380, 335 – 340 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Y. Louie, M. M. Huber, E. T. Ahrens, et al., Nat. Biotechnol., 18, 321 – 325 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    S. R. Saptarshi, A. Duschl, A. L. Lopata, et al., J. Nanobiotechnol., 11, 26 (2013).CrossRefGoogle Scholar
  11. 11.
    N. V. Pul’kova, S. A. Tonevitskaya, V. M. Gerasimov, et al., Nanotechnol. Russ., 10, 570 – 575 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Bandhu, S. Sutradhar, S. Mukherjee, et al., Mater. Res. Bull., 70, 145 – 154 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Koseoolu, Ceram. Int., 41, 11655 – 11661 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Phumying, S. Labuayai, E. Swatsitang, et al., Mater. Res. Bull., 48(6), 2060 – 2065 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 – 8205 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    J. W. Cheon, N. J. Kang, S. M. Lee, et al., J. Am. Chem. Soc., 126, 1950 – 1951 (2004).CrossRefPubMedGoogle Scholar
  17. 17.
    A. Shavel, B. Rodriguez-Gonzalez, J. Pacifico, et al., Chem. Mater., 21, 1326 – 1332 (2009).CrossRefGoogle Scholar
  18. 18.
    C. J. Jia, L. D. Sun, F. Luo, et al., J. Am. Chem. Soc., 130, 16968 – 16977 (2008).CrossRefPubMedGoogle Scholar
  19. 19.
    D. Kim, N. Lee, M. Park, et al., J. Am. Chem. Soc., 131, 454 – 455 (2009).CrossRefPubMedGoogle Scholar
  20. 20.
    L. Li, W. Jiang, K. Luo, et al., Theranostics, 3(8), (2013).Google Scholar
  21. 21.
    S. Laurent, D. Forge, and M. Port, Chem. Rev., 108, 2064 – 2110 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    W. Wu, Q. He, and C. Jiang, Nanoscale Res. Lett., 3(11), 397 – 415 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    N. Lee, Y. Choi, Y. Lee, et al., Nano Lett., 12, 3127 – 3131 (2012).CrossRefPubMedGoogle Scholar
  24. 24.
    V. K. Sharma, A. Alipour, Z. Soran-Erdem, et al., Nanoscale, 7(23), 10519 – 10526 (2015).CrossRefPubMedGoogle Scholar
  25. 25.
    N. Lee, H. Kim, S. H. Choi, et al., Proc. Natl. Acad. Sci. USA, 108(7), 2662 – 2667 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Z. Zhou, X. Zhu, D. Wu, et al., Chem. Mater., 27(9), 3505 – 3515 (2015).CrossRefGoogle Scholar
  27. 27.
    L.-P. Hwang and J. H. Freed, J. Chem. Phys., 63, 4017 (1975).CrossRefGoogle Scholar
  28. 28.
    J. Mohapatra, A. Mitra, H. Tyagi, et al., Nanoscale, 7, 9174 – 9184 (2015).CrossRefPubMedGoogle Scholar
  29. 29.
    Z. Zhao, Z. Zhou, J. Bao, et al., Nat. Commun., 4, 2266 (2013).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Ravichandran, S. Velumani, and J. T. Ramirez, Biomed. Phys. Eng. Express, 3, 1 – 10 (2017).CrossRefGoogle Scholar
  31. 31.
    M. Cho, A. Cervadoro, M. R. Ramirez, et al., Nanomaterials, 7(4), 72 (2017).CrossRefPubMedCentralGoogle Scholar
  32. 32.
    S. Laurent, J.-L. Bridot, L. Vander Elst, et al., Future Med. Chem., 2(3), 427 – 449 (2010).CrossRefPubMedGoogle Scholar
  33. 33.
    S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, and R. Massart, J. Mater. Res., 13, 2975 (1998).CrossRefGoogle Scholar
  34. 34.
    J. C. Bacri, R. Perzynski, and D. Salin, J. Magn. Magn. Mater., 85, 27 (1990).CrossRefGoogle Scholar
  35. 35.
    M. Taupitz, S.Wagner, J. Schnorr, et al., Invest. Radiol., 39, 394 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    C. Yee, G. Kataby, G. Ulman, et al., Langmuir, 15, 7111 (1999).CrossRefGoogle Scholar
  37. 37.
    M. D. Shultz, J. U. Reveles, S. N. Khanna, et al., J. Am. Chem. Soc., 129(9), 2482 – 2487 (2007).CrossRefPubMedGoogle Scholar
  38. 38.
    P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, et al., Handbook of Magnetic Materials, Elsevier, Amsterdam (2006), p. 403.Google Scholar
  39. 39.
    H. W. Kang, L. Josephson, A. Petrovsky, et al., Bioconjugate Chem., 13, 122 (2002).CrossRefGoogle Scholar
  40. 40.
    D. K. Kim, M. Mikhaylova, F. H. Wang, et al., Chem. Mater., 15, 4343 (2003).CrossRefGoogle Scholar
  41. 41.
    M. Iijima, Y. Yonemochi, M. Tsukada, et al., J. Colloid Interface Sci., 298, 202 (2006).CrossRefPubMedGoogle Scholar
  42. 42.
    G. D. Mendenhall, Y. Geng, and J. Hwang, J. Colloid Interface Sci., 184, 519 (1996).CrossRefPubMedGoogle Scholar
  43. 43.
    K. Wormuth, J. Colloid Interface Sci., 241, 366 (2001).CrossRefGoogle Scholar
  44. 44.
    H.-L. Liu, S. P. Ko, and J.-H. Wu, J. Magn. Magn. Mater., 310, 815 (2006).CrossRefGoogle Scholar
  45. 45.
    J. L. Arias, V. Gallardo, S. A. Gomez-Lopera, et al., J. Biomed. Nanotechnol., 1, 214 (2005).CrossRefGoogle Scholar
  46. 46.
    S. A. Gomez-Lopera, J. L. Arias, V. Gallardo, et al., Langmuir, 22, 2816 (2006).CrossRefPubMedGoogle Scholar
  47. 47.
    J. L. Arias, M. Lopez-Viota, M. A. Ruiz, et al., Int. J. Pharm., 339, 237 (2007).CrossRefPubMedGoogle Scholar
  48. 48.
    C. Flesch, C. Delaite, P. Dumas, et al., J. Polym. Sci., Part A: Polym. Chem., 42, 6011 – 6020 (2004).CrossRefGoogle Scholar
  49. 49.
    A. Semkina, M. Abakumov, and N. Grinenko, Colloids Surf., B, 136, 1073 – 1080 (2015).CrossRefGoogle Scholar
  50. 50.
    S. Tong, S. Hou, Z. Zheng, et al., Nano Lett., 10, 4607 – 4613 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Y. C. Park, J. B. Smith, T. Pham, et al., Colloids Surf., B, 119, 106 – 114 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Nikitin
    • 1
    • 2
  • M. A. Khramtsov
    • 1
  • A. G. Savchenko
    • 1
  • M. A. Abakumov
    • 1
    • 3
  • A. G. Mazhuga
    • 2
    • 4
  1. 1.National University of Science and Technology MISIS (Moscow Institute of Steel and Alloys)MoscowRussia
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.N. I. Pirogov Russian National Research Medical UniversityMoscowRussia
  4. 4.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations