Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 3, pp 191–194 | Cite as

Effect of N-[Imino(1-Piperidinyl)Methyl]Guanidine on Free-Radical Processes and Antioxidant-Enzyme Activity in Kidneys of Rats with Experimental Type 2 Diabetes Mellitus

  • E. I. Sklyarova
  • T. N. Popova
  • K. K. Shul’gin
  • V. V. Spitsina
  • D. V. Kryl’skii
  • A. V. Semenikhina
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • 34 Downloads

The effect of the synthetic biguanide derivative N-[imino(1-piperidinyl)methyl]guanidine on free-radical processes, diene conjugate levels, and superoxide-dismutase and catalase activity in kidneys of rats with experimental type 2 diabetes mellitus (DM2) was studied. It was established that administration of this compound to rats with DM2 helped to normalize the studied parameters, which may have been due to its positive regulating effect on free-radical homeostasis.

Keywords

type 2 diabetes mellitus free-radical processes antioxidant enzymes biguanides 

References

  1. 1.
    A. V. Sadym, A. A. Lagunin, D. A. Filimonov, et al., Khim.-farm. Zh., 36(10), 21 – 26 (2002); Pharm. Chem. J., 36(10), 538 – 543 (2002).Google Scholar
  2. 2.
    V. V. Poroikov, D. A. Filimonov, and C. Helma (eds.), Predictive Toxicology, Taylor & Francis, New York (2005), pp. 459 – 478.CrossRefGoogle Scholar
  3. 3.
    A. M. Ul’yanov and Yu. A. Tarasov, Vopr. Med. Khim., 46(2), 149 – 154 (2000).Google Scholar
  4. 4.
    V. S. Buzlama, Methodical Guide to Studies of Lipid Peroxidation Processes and Antioxidant Protection Systems in Animals [in Russian], Izd. VSU, Voronezh (1997), p. 41.Google Scholar
  5. 5.
    I. D. Stal’naya, Modern Methods in Biochemistry [in Russian], Meditsina, Moscow (1977), p. 18.Google Scholar
  6. 6.
    T. I. Rakhmanova, L. V. Matasova, A. V. Semenikhina, et al., Assessment Methods for Oxidative Status: Methodical Guide for Higher Educational Institutions [in Russian], Izd. VSU, Voronezh (2009), pp. 35 – 37.Google Scholar
  7. 7.
    O. M. Smirnova, Sakh. Diabet, No. 3, 45 – 46 (2010).Google Scholar
  8. 8.
    M. I. Balabolkin, V. M. Kreminskaya, and E. M. Klebanova, Consilium Med., 3(11), 154 – 156 (2001).Google Scholar
  9. 9.
    M. R. Owen, E. Doran, and A. P. Halestrap, Biochem. J., No. 3, 607 – 614 (2000).Google Scholar
  10. 10.
    N. Ouslimani, J. Peynet, D. Bonnefont-Rousselot, et al., Metabolism, 54(6), 829 – 834 (2005).CrossRefPubMedGoogle Scholar
  11. 11.
    B. K. Tiwari, K. B. Pandey, A. B. Abidi, et al., J. Biomarkers, 2013, Article ID 378790;  https://doi.org/10.1155/2013/378790 (2013).
  12. 12.
    E. B. Men?shikova, B. Z. Lankin, N. K. Zenkov, et al., Oxidative Stress. Prooxidants and Antioxidants [in Russian], Slovo, Moscow (2006), p. 553.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. I. Sklyarova
    • 1
  • T. N. Popova
    • 1
  • K. K. Shul’gin
    • 1
  • V. V. Spitsina
    • 1
  • D. V. Kryl’skii
    • 2
  • A. V. Semenikhina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Center for High TechnologyScientific Research Institute of Applied AcousticsDubna-1Russia

Personalised recommendations