Skip to main content
Log in

Effects of Pharmaceutical Preparations on the Rate of Degradation of Poly(Lactide-Co-Glycolide) Scaffolds

  • DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The effects of acetylsalicylic acid, ibuprofen, 6-methyluracil, and chondroitin sulfate impregnated in poly-(lactide-co-glycolide) scaffolds of different chemical compositions and molecular weights using supercritical carbon dioxide on the processes of scaffold degradation in phosphate-buffered saline pH 7.4 were studied and the rate constants of these processes were determined. Incorporation of acetylsalicylic acid and ibuprofen into poly(lactide-co-glycolide) scaffolds was found to produce significant increases in the rate of hydrolysis of the polymer base, while the presence of methyluracil and chondroitin sulfate had virtually no effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. P. A. Gunatillake and R. Adhikari, Eur. Cells Mater., 5, 1 – 16 (2003).

    Article  CAS  Google Scholar 

  2. J. Tsung and D. J. Burgess, in: Fundamentals and Appl. of Controlled Release Drug Delivery, M. Rathbone, R. Siegel, and J. Shipmann (eds.), CRS Press, Springer, Part 2 (2012), pp. 107 – 123.

  3. S. A. Kedik, E. S. Zhavoronok, I. P. Sedishev, et al., Razrab. Registrats. Lek. Sred., 3, 18 – 35 (2013).

    Google Scholar 

  4. C. Engineer, J. Parikh, and A. Raval, Trends Biomater. Artif. Organs, 25, 79 – 85 (2011).

    Google Scholar 

  5. H. K. Makadia and S. J. Siegel, Polymers, 3, 1377 – 1397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Siepmann, K. Elkharraz, F. Siepmann, and D. Klose, Biomacromolecules, 6, 2312 – 2319 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. J. Y. Yoo, J. M. Kim, K. S. Seo, et al., Bio-Med. Mater. Engin., 15, 279 – 288 (2015).

    Google Scholar 

  8. Y. Cha and C. G. Pitt, J. Control. Rel., 8, 259 – 265 (1988).

    Article  Google Scholar 

  9. A. Frank, S. K. Rath, and S. S. Venkatraman, J. Control. Rel., 102, 333 – 344 (2005).

    Article  CAS  Google Scholar 

  10. S. J. Siegel, J. B. Kahn, K. Metzger, K. I. Winey, et al., Eur. J. Pharm. Biopharm., 64, 287 – 293 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. M. Stevanovic and D. Uskokovic, Cur. Nanoscie., 5, 1 – 14 (2009).

    Article  CAS  Google Scholar 

  12. E. K. Alekhin, Sorovskii Obrazovat. Zh., No. 7, 85 – 90 (1999).

  13. K. D. Rainsford (ed.), Ibuprofen: Discovery, Development and Therapeutics, Wiley-Blackwell, New Jersey (2015).

  14. J. A. Singh, S. Noorbaloochi, R. MacDonald, and L. J. Maxwell, Chondroitin for Osteoarthritis, Cochrane Database of Systematic Reviews, Issue 1 (2015, Art. No. CD005614.

  15. A. F. Ismagilova, F. S. Zarudii, and D. N. Lazareva, Antibiot. Khimioter., 43, 24 – 25 (1998).

    Google Scholar 

  16. S. M. Howdle, M. S. Watson, M. J. Whitaker, et al., Chem. Commun., 109 – 110 (2001).

  17. S. E. Bogorodskii, T. S. Zarkhina, E. V. Kuznetsov, et al., Rus. J. Phys. Chem. B, 8, 924 – 931 (2014).

    Article  CAS  Google Scholar 

  18. M. Floren, S. Spilimbergo, A. Motta, and C. Migliaresi, J. Biomed. Mater. Res. Part B: Appl. Biomater., 99B, 338 – 349 (2011).

    Article  CAS  Google Scholar 

  19. M. Hakkarainen, A. C. Albertsson, and S. Karlsson, Polym. Degrad. Stab., 52, 283 – 291 (1996).

    Article  CAS  Google Scholar 

  20. Y. Cha and C. G. Pitt, Biomaterials, 11, 108 – 112 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. S. C. J. Loo, C. P. Ooi, S. H. E. Wee, and Y. C. F. Boey, Biomaterials, 26, 2827 – 2833 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. S. Li, H. Garreau, and M. Vert, J. Mater. Sci. Mater. Med., 1, 131 – 139 (1990).

    Article  CAS  Google Scholar 

  23. T. Yoshioka, N. Kawazoe, T. Tateishi, and G. Chen, Biomaterials, 29, 3438 – 3443 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. G. Reich, Drug Develop. Indust. Pharm., 23, 1177 – 1189 (1997).

    Article  CAS  Google Scholar 

  25. H. Tsuji, Polymer, 43, 1789 – 1796 (2002).

    Article  CAS  Google Scholar 

  26. L. Wu and J. Ding, Biomaterials, 25, 5821 – 5830 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Mohammadi and E. Jabbari, Macromol. Theory Simul., 15, 643 – 653 (2006).

    Article  CAS  Google Scholar 

  28. X. Chen, C. P. Ooi, and T. H. Lim, J. Biomater. Appl., 20, 287 – 302 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. B. S. Zolnik and D. J. Burgess, J. Control. Rel., 122, 338 – 344 (2007).

    Article  CAS  Google Scholar 

  30. D. Klose F. Siepmann, K. Elkharraz, and J. Siepmann, Int. J. Pharm., 354, 95 – 103 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. E. N. Antonov, D. V. Butnaru, A. Z. Vinarov, et al., Éksperim. Klin. Farmakol., 78(3), 36 – 39 (2015).

    CAS  Google Scholar 

  32. L. I. Krotova, E. N. Antonov, S. A. Minaeva, and V. K. Popov, Proceedings, BalticSCF 2015, 14 – 19 September, 2015 [in Russian], Zelenogradsk, Kaliningradskoi District (2015), ST-20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Antonov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 52, No. 1, pp. 39 – 46, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, E.N., Dunaev, A.G., Minaeva, S.A. et al. Effects of Pharmaceutical Preparations on the Rate of Degradation of Poly(Lactide-Co-Glycolide) Scaffolds. Pharm Chem J 52, 69–76 (2018). https://doi.org/10.1007/s11094-018-1767-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1767-8

Keywords

Navigation