Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 1, pp 30–36 | Cite as

Design, Synthesis, and Pharmacological Activity of a New Matrix Metalloproteinase-9 Inhibitor

  • O. S. Grigorkevich
  • G. V. Mokrov
  • A. S. Dyabina
  • V. N. Stolyaruk
  • I. B. Tsorin
  • E. O. Ionova
  • S. A. Kryzhanovskii
  • T. A. Gudasheva
  • A. D. Durnev
SEARCH FOR NEW DRUGS
  • 57 Downloads

The new MMP-9 inhibitor 1-{4-[(4-chlorobenzoyl)amino]phenyl}sulfonyl-L-proline, with a theoretical inhibition constant of IC50 = 4 × 105 M, was constructed on the basis of structural requirements for selective inhibitors of gelatinases. This constructed compound and its close structural analogs were synthesized and these substances were found to have low toxicity, (LD50 > 300 mg/kg). The new inhibitor given p.o. at a dose of 20 mg/kg/day on the background of acute myocardial infarction significantly decreased the content of immunoreactive MMP-9 in plasma in rats, to the level obtained with doxycycline.

Keywords

matrix metalloproteinases gelatinase B MMP-9 inhibitors benzoylamino(phenylsulfonyl)amino acids cardioprotective substances early postinfarct myocardial remodeling 

References

  1. 1.
    P. Van Lint and C. Libert, J. Leukoc. Biol., 82, 1375 – 1381 (2007).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Hori and K. Nishida, Cardiovasc. Res., 81(3), 457 – 464 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    F. G. Spinale, Physiol. Rev., 87, 1285 – 1342 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    A. G. Gasanov and T. V. Bershova, Biomed. Khim., 55(2), 155 – 168 (2009).PubMedGoogle Scholar
  5. 5.
    K. S. Moshal, Physiol. Res., 57, 379 – 384 (2008).PubMedGoogle Scholar
  6. 6.
    J. Simova and J. J. Serum, Folia Biol., 59(5), 181 – 187 (2013).Google Scholar
  7. 7.
    P. Jain, C. Saravanan, and S. K. Singh, Eur. J. Med. Chem., 60, 89 – 100 (2013).CrossRefPubMedGoogle Scholar
  8. 8.
    T. J. Peterson, H. Hallak, L. Johnson, et al., Circulation, 103, 2303 – 2309 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    L. E. Rohde, A. Ducharme, L. H. Arroyo, et al., J. Am. Heart Assoc., 3063 – 3070 (1999).Google Scholar
  10. 10.
    W. M. Yarbrough, R. Mukherjee, G. P. Escobar, et al., Circulation, 108, 1753 – 1759 (2003).CrossRefPubMedGoogle Scholar
  11. 11.
    M. P. Hudson, P. W. Armstrong, W. Ruzyllo, et al., J. Am. Coll. Cardiol., 48, 15 – 20 (2006).CrossRefPubMedGoogle Scholar
  12. 12.
    R. P. Verma and S. Hansch, Bioorg. Med. Chem., 5, 2223 – 2268 (2007).CrossRefGoogle Scholar
  13. 13.
    D. P. Becker, T. E. Barta, L. J. Bedell, et al., J. Med. Chem., 53, 6653 – 6680 (2010).CrossRefPubMedGoogle Scholar
  14. 14.
    J. M. Cathcart and J. Cao, Frontiers in Bioscience, Landmark, 20, 1164 – 1178 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Whittaker, C. D. Floyd, P. Brown, et al., Chem. Rev., 99, 2735 – 2776 (1999).CrossRefPubMedGoogle Scholar
  16. 16.
    G. Cerisano, P. Buonamici, A. M. Gori, et al., Int. J. Cardiol., 197, 147 – 153 (2015).CrossRefPubMedGoogle Scholar
  17. 17.
    G. Cerisano, P. Buonamici, R. Valenti, et al., Eur. Heart J., 1 – 8 (2013).Google Scholar
  18. 18.
    G. Cerisano, P. Buonamici, R. Valenti, et al., Basic Res. Cardiol., 1 – 9 (2014).Google Scholar
  19. 19.
    T. Sadowski and J. Steinmeyer, Inflamm. Res., 50(3), 175 – 82 (2001).CrossRefPubMedGoogle Scholar
  20. 20.
    M. L. Lindsey, Global J. Hum. Anat. Physiol. Res., 1, 6 – 9 (2014).Google Scholar
  21. 21.
    C. Camodeca, E. Nuti, L. Tepshi, et al., Eur. J. Med. Chem., 111, 193 – 201 (2016).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Oltenfreiter, L. Staelens, A. Lejeune, et al., Nucl. Med. Biol., 31, 459 – 468 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    A. Tochowicz, K. Maskos, R. Huber, et al., J. Mol. Biol., 371, 989 – 1006 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Whittaker and A. Ayscough, Celltransmissions, 17(1), 3 – 14 (2001).Google Scholar
  25. 25.
    B. Pirad and H. Matter, J. Med. Chem., 49(1), 51 – 69 (2006).CrossRefGoogle Scholar
  26. 26.
    US Patent No. 5985900 A (1999).Google Scholar
  27. 27.
    Y. Tamura, F. Watanabe, T. Nakatani, et al., J. Med. Chem., 41, 640 – 649 (1998).CrossRefPubMedGoogle Scholar
  28. 28.
    D. Yamamoto and S. Takai, Cur. Med. Chem., 16, 1349 – 1354 (2009).CrossRefGoogle Scholar
  29. 29.
    R. A. Friesner, R. B. Murphy, M. P. Repasky, et al., J. Med. Chem., 49, 6177 – 6196 (2006).CrossRefPubMedGoogle Scholar
  30. 30.
    T. A. Halgren, R. B. Murphy, R. A. Friesner, et al., J. Med. Chem., 47, 1750 – 1759 (2004).CrossRefPubMedGoogle Scholar
  31. 31.
    Schrodinger Release 2015-4: Maestro, version 10.4, Schrodinger, LLC, New York, NY (2015).Google Scholar
  32. 32.
    R. J. Cremlyn, F. S. Swinbourne, A. Batchelor, et al., Indian J. Chem., Section B: Organic Chem. Including Med. Chem., 2, No. 10, 1029 – 1043 (1983).Google Scholar
  33. 33.
    Y. Wang, D. Zhu, L. Tang, et al., Angew. Chem. Int. Ed., 50, 8917 (2011).CrossRefGoogle Scholar
  34. 34.
    M. Tamura, D. Murase and K. Komura, Synthesis (Germany), 47(6), 769 – 776 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Van den Nieuwendijk, D. Pietra, L. Heitman, et al., J. Med. Chem., 47, 663 – 672 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    J. DeRuiter, R. F. Borne, and C. A. Mayfield, J. Med. Chem., 32(1), 145 – 151 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. S. Grigorkevich
    • 1
  • G. V. Mokrov
    • 1
  • A. S. Dyabina
    • 1
  • V. N. Stolyaruk
    • 1
  • I. B. Tsorin
    • 1
  • E. O. Ionova
    • 1
  • S. A. Kryzhanovskii
    • 1
  • T. A. Gudasheva
    • 1
  • A. D. Durnev
    • 1
  1. 1.V. V. Zakusov Science Research Institute of PharmacologyMoscowRussia

Personalised recommendations