Skip to main content

Advertisement

Log in

Synthesis of Analogs of Trans-Fagaramide and Their Cytotoxic Activity

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A series of 30 compounds were synthetized inspired by active trans-fagaramide structure skeleton. On this synthetic platform, 18 compounds were achieved via Knoevenagel condensation using maleic acid and piperonal, followed by peptide coupling with various amines, giving an average yield of 54%. Subsequently, nine compounds were obtained by palladium-mediated Heck coupling with an average yield of 79%. In addition, cytotoxic activity was evaluated against cardiomyoblast H9c2, breast adenocarcinoma MCF7, hepatocellular carcinoma HepG2, and glioblastoma U-87 cells. The results revealed two aryl halogen-substituted compounds moderately active against H9c2 and MCF7 with IC50 values > 50 μM. One functionalized coumarin showed inhibitory activity against H9c2 (IC50 > 50 μM). In contrast, p-aminophenyl-β-monosubstituted trans-fagaramide was found to inhibit MCF7 (IC50 > 50 μM) without showing toxicity against H9c2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Scheme 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. K. Adesina, Afr. J. Trad. CAM., 2(3), 282 – 301 (2005).

    CAS  Google Scholar 

  2. L. Mbaze, J. Lado, J. Duplex, et al., Phytochemistry., 70, 1442 – 1447 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. N. Pauline, B. Prosper, P. Constant, et al., BMC Complem. Altern. Med., 13, 1 – 7 (2013).

    Article  Google Scholar 

  4. R. Vasques, H. M. Debonsi, M. J. Kato, et al., Phytochemistry, 59, 521 – 527 (2002).

    Article  Google Scholar 

  5. A. Navarrete, A. Flores, C. Sixtos, and B. Reyes, Revista de la Sociedad Química de México, 47, 178 – 185 (2003).

    CAS  Google Scholar 

  6. E. Ginesta, P. Cuñat, J. Primo, and E. Primo, Biosci. Biothech. Biochem., 5, 936 – 937 (1994).

    Google Scholar 

  7. R. Schobert, S. Siegfried, and G. Gordon, J. Chem. Soc., 1, 2393 – 2397 (2001).

    Google Scholar 

  8. J. McNulty and C. Zepeda-Velázquez, Angew. Chem. Int. Ed., 53, 8450 – 8454 (2014).

    Article  CAS  Google Scholar 

  9. P. Umadevi, K. Deepti, and Durvasula Venugopal, Med. Chem. Res., 22, 5466 – 5471 (2013).

    Article  CAS  Google Scholar 

  10. J. Zhao, X. Ling, S. Cao, et al., Mol. Pharmaceutics, 11, 457 – 467 (2014).

    Article  CAS  Google Scholar 

  11. J. P. D. Van Veldhoven, C. C. Blad, C. M. Artsen, et al., Bioorg. Med. Chem. Lett., 21(9), 2736 – 2739 (2011).

    Article  PubMed  Google Scholar 

  12. H. M. Sampath, B. V. Subbareddy, S. Anjaneyulu, and J. S. Yadav, Synthetic Commun., 28, 3811 – 3815 (1998).

    Article  Google Scholar 

  13. K. Mogilaiah and R. Reddy, Synthetic Commun., 34, 205 – 210 (2004).

    Article  CAS  Google Scholar 

  14. S. Hanand Y. Kim, Tetrahedron, 60, 2447 – 2467 (2004).

    Article  Google Scholar 

  15. C. A. G. N. Montalbetti and, V. Falque. Tetrahedron, 61, 10827 – 10852 (2005).

    Article  CAS  Google Scholar 

  16. M. Shokoofeh, S. Ramezanpour, F. Darvish, et al., Tetrahedron, 69, 2075 – 2080 (2013).

    Article  Google Scholar 

  17. Tze Chieh Shiao, Développement d’un vaccin synthétique contre Burkholderia Cepacia impliqué dans la fibrose kystique, Master’s Thesis, Université du Québec à Montréal, Canada. (2009).

  18. P. Li, L. Wang, L. Zhang, and G. Wang, Adv. Synth. Catal., 354, 1307 – 1318 (2012).

    Article  CAS  Google Scholar 

  19. C. De Careful, P. T. Nguyen, S. Sahnouni, and S. Borgeault, Biopolymers , 100, 645 – 655 (2013).

    Article  Google Scholar 

  20. R. M. Ngoumfo, J. B. Jouda, F. T. Mouafo, et al., Bioorg. Med. Chem., 18(10), 3601 – 3605 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. J. F. Berrío, V. H. Arango, E. Galeano, et al., Ars Pharm., 57(4), 183 – 191 (2016).

    Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

M. Barrera did all the synthesis as a part of her Master Thesis and wrote the paper. T. C. Shiao contributed to the interpretation of spectra. P. T. Nguyen and S. Bourgault performed evaluation of the cytotoxic activity. R. Roy designed thematics and supervised all experiments presented in the paper.

Corresponding author

Correspondence to Melissa Barrera Tomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomas, M.B., Shiao, T.C., Nguyen, P.T. et al. Synthesis of Analogs of Trans-Fagaramide and Their Cytotoxic Activity. Pharm Chem J 51, 995–1004 (2018). https://doi.org/10.1007/s11094-018-1729-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1729-1

Keywords

Navigation