Inhibitory Effect of Excoecaria Agallocha L. Extracts on Elastase and Collagenase and Identification of Metabolites Using HPLC-UV-MS Techniques

Article
  • 1 Downloads

The present study is aimed at evaluating the anti-elastase and anti-collagenase activity and determining the active constituents of Excoecaria agallocha L. plant extracts. Ethanol extracts of E. agallocha exhibit highest extraction yield (23%) and greater total content of phenolic compounds and flavonoids as compared to other extracts. At a concentration of 80 μg/mL, the ethanol extract produced more significant (p < 0.01) inhibition of elastase (82.7%) and collagenase (76.12%) activity and acted as a non-competitive inhibitor. Fourteen flavonoids were identified in the active ethanol extract. Further studies will provide direct way to the development of elastase and collagenase inhibitors from E. agallocha.

Keywords

elastase flavonoids HPLC-UV-MS mangrove rutoside 

References

  1. 1.
    S. Kaliamurthi, G. Selvaraj, R. Thirugnanasambandam, and R. J. Coast, Life Med., 2. 642 – 647 (2014).Google Scholar
  2. 2.
    J. H. Zou, J. Dai, X. Chen, and J. Q. Yuan. Pharm. Bull., 54. 920 – 921 (2006)Google Scholar
  3. 3.
    J. K. Patra, T. K. Panigrahi, S. K. Rath, et al., Adv. Nat. Appl. Sci., 3. 241 – 246 (2009).Google Scholar
  4. 4.
    Y. L. N. Murthy, M. Devarapalli, and V. Varahalarao. J. Pharm. Res., 3. 1 – 5 (2010)Google Scholar
  5. 5.
    K. Satyavani, S. Gurudeeban, V. Manigandan, et al., Curr. Res. Chem., 7. 1 – 8 (2015).Google Scholar
  6. 6.
    M. Rahman, A. Siddika, B. Bhadra, et al., Adv. Nat. Appl. Sci., 4, 361 – 364 (2010).Google Scholar
  7. 7.
    P. Thirunavukkarasu, L. Ramkumar, and T. Ramanathan, Global J. Pharmacol., 3, 123 – 126 (2009).Google Scholar
  8. 8.
    J. A. Shilpi, M. E. Islam, M. Billah, et al., Adv. Pharmacol. Sci., Article ID 576086 (2012).Google Scholar
  9. 9.
    N. Subhan, A. Alam, F. Ahmed, et al., Turk. J. Pharm. Sci., 5, 143 – 154 (2008).Google Scholar
  10. 10.
    K. Satyavani, S. Gurudeeban, T. Ramanathan, et al., Inventi Rapid: Ethnopharmacol., 1, 1 – 4 (2014).Google Scholar
  11. 11.
    G. Selvaraj, S. Kaliamurthi, R. Thirungnasambandam, et al., Biomed. Environ. Sci., 27, 295 – 299 (2014).PubMedGoogle Scholar
  12. 12.
    K. Satyavani, Ph. D. Thesis, Annamalai University, India (2013).Google Scholar
  13. 13.
    S. E. Gill and W. C. Parks. Int. J. Biochem. Cell Biol., 40, 1334 – 1347 (2008).CrossRefPubMedGoogle Scholar
  14. 14.
    M. D. Matchett, S. L. MacKinnon, M. I. Sweeney, et al., Biochem. Cell Biol., 83, 637 – 643 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    M. D. Sternlicht and Z. Werb. Ann. Rev. Cell Dev. Biol., 17463 – 17516 (2001).Google Scholar
  16. 16.
    M. Khan, Ph. D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan (2010).Google Scholar
  17. 17.
    G. Trease and W. Evans, Text Book of Pharmacognosy (1970), pp. 210 – 214.Google Scholar
  18. 18.
    J. Vabkova and J. Neugebauerova, Acta Univ. Agric. Silvic. Mendel Brun., 20, 167 – 172 (2012).Google Scholar
  19. 19.
    C. C. Chang, M. H. Yang, H. M. Wen, et al., J. Food Drug Anal., 10, 178 – 182 (2002).Google Scholar
  20. 20.
    A. Sahasrabudhea and M. Deodhar, Int. J. Bot., 6, 299 – 303 (2010).CrossRefGoogle Scholar
  21. 21.
    T. S. A. Thring, P. Hill, and P. Naughton, BMC Complem. Altern. Med., 9, 27 (2009).CrossRefGoogle Scholar
  22. 22.
    H. Lineweaver and D. Burk, J. Am. Chem. Soc., 56, 658 – 666 (1934).Google Scholar
  23. 23.
    J. M. Milnerand and T. E. Cawston, Curr. Drug Targets Inflamm. Allergy, 4, 363 – 375 (2005).CrossRefGoogle Scholar
  24. 24.
    K. Satyavani, S. Gurudeeban, T. Ramanathan, et al., Br. J. Pharm. Res., 7, 102 – 109 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia

Personalised recommendations