Advertisement

Pharmaceutical Chemistry Journal

, Volume 50, Issue 9, pp 583–588 | Cite as

Synthesis and Antimicrobial Activity of 4-formylphenyl-N-phenylcarbamates

  • A. V. Velikorodov
  • V. A. Ionova
  • E. A. Shustova
  • A. A. Starikova
Article
  • 88 Downloads

Novel phenylcarbamates with isoxazole, nitrofuran, thiosemicarbazone, isonicotinoylhydrazide, and pyridine moieties were synthesized by [3+2]-cycloaddition and condensation reactions of 4-formylphenyl-N-phenylcarbamate. Their antimicrobial activities against museum strains of Gram-positive bacteria Staphylococcus aureus 209-P and Streptococcus pneumoniae, Gram-negative bacteria E. coli O18 and Pseudomonas aeruginosa 165, and human Micrococcus culture were studied. Derivatives with isoxazole, nitrofuran, and hydrazide moieties were the most active.

Keywords

cycloaddition and condensation reactions spiro compounds functionalized with a carbamate antimicrobial activity 

References

  1. 1.
    G. Bobowski and J. Shavel, J. Org. Chem., 32(4), 953 – 959 (1967).CrossRefGoogle Scholar
  2. 2.
    D. Habibi, M. A. Zolfigol, and M. Safaee, J. Chem., 1 – 6, Article ID 4959821 (2013).Google Scholar
  3. 3.
    A. V. Velikorodov and L. T. Sukhenko, Khim.-farm. Zh., 37(1), 24 – 26 (2003).Google Scholar
  4. 4.
    T. Naqvi, K. K. Kapoor, and R. L. Sharma, Indian J. Chem., Sect. B:Org. Chem. Incl. Med. Chem., 49(9), 1282 – 1289 (2010).Google Scholar
  5. 5.
    V. L. Giranda, G. R. Russo, P. J. Felock, et al., Acta Crystallogr., Sect. D: Biol. Crystallogr., 51, 496 – 503 (1995).CrossRefGoogle Scholar
  6. 6.
    T. Honna, K. Ogawa, M. Tanaka, et al., Pat. No. JP S5414968, Feb. 3, 1979.Google Scholar
  7. 7.
    Y. Durust, C. Altug, M. Kaiser, et al., Monatsh. Chem., 144, 707 – 716 (2013).CrossRefGoogle Scholar
  8. 8.
    A. V. Velikorodov and V. B. Mochalin, Russ. J. Org. Chem., 37(1), 83 – 86 (2001).CrossRefGoogle Scholar
  9. 9.
    B. A. Anderson, L. M. Becke, R. N. Booher, et al., J. Org. Chem., 62(25), 8634 – 8639 (1997).CrossRefGoogle Scholar
  10. 10.
    T. Govindasami, A. Pandey, N. Palanivelu, and A. Pandey, Int. J. Org. Chem., 1, 71 – 77 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Singh and N. Raghav, Int. J. Pharm. Pharm. Sci., 3, No. 4, 26 – 32 (2011).Google Scholar
  12. 12.
    E. Pahontu, V. Fala, A. Gulea, et al., Molecules, 18, 8812 – 8836 (2013).CrossRefPubMedGoogle Scholar
  13. 13.
    R. Narang, B. Narasimhan, S. Sharma, et al., Med. Chem. Res., 21(8), 1557 – 1576 (2012).CrossRefGoogle Scholar
  14. 14.
    A. V. Velikorodov, V. A. Ionova, S. I. Temirbulatova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 56(2), 26 – 29 (2013).Google Scholar
  15. 15.
    I. N. Belyanin and S. G. Safonova, Probl. Tuberk., No. 2, 48 – 49 (1999).Google Scholar
  16. 16.
    A. S. Labinskaya, Microbiology with Microbiological Research Techniques [in Russian], Meditsina, Moscow (1972).Google Scholar
  17. 17.
    A. G. Khomenko, Probl. Tuberk., No. 8, 53 – 57 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. V. Velikorodov
    • 1
  • V. A. Ionova
    • 1
  • E. A. Shustova
    • 1
  • A. A. Starikova
    • 2
  1. 1.Astrakhan State UniversityAstrakhanRussia
  2. 2.Astrakhan State Medical UniversityAstrakhanRussia

Personalised recommendations