Skip to main content
Log in

Improving Pharmaceutical Characteristics of Curcumin by Alginate/Pectin Microparticles

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This study was aimed at the preparation of curcumin-loaded alginate/pectin microparticles (beads) in order to enhance the pharmaceutical effect of curcumin as a drug for colon related diseases. For this purpose, three types of curcumin-loaded beads were prepared with different alginate/pectin ratios (100/0, 75/25 and 50/50) and studied in various experiments including the release of curcumin from beads and swelling of beads in buffer solutions of simulated gastric, intestinal, and colon fluids. The results of curcumin releasing experiments under conditions mimicking stomach to colon transit showed that the beads with higher content of pectin exhibit stronger curcumin entrapment, slower release rate, and lower swelling. Thus, 50/50 alginate/pectin composition has minimum release in the upper parts of gastrointestinal tract (stomach and intestine). However, when these beads reached colonic buffer medium, the curcumin release suddenly increased. Therefore, beads with 50/50 alginate/pectin compositions could be useful as a suitable carrier for curcumin delivery to colon. Moreover, the stability and chemical protection of curcumin encapsulated in these beads was confirmed by high performance liquid chromatography measurements after a period of six months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Bisht, G. Feldmann, S. Soni, et al., J. Nanobiotechnol., 5(3), 1 – 18 (2007).

    Google Scholar 

  2. H. H. Tonnesen, M. Masson, and T. Loftsson, Int. J. Pharmaceutics, 244, 127 – 135 (2002).

    Article  CAS  Google Scholar 

  3. J. J. Johnson and H. Mukhtar, Cancer Lett., 255, 170 – 181 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. S. Shishodia, M. M. Chaturvedi and B. B. Aggarwal, Curr. Probl. Cancer, 31, 243 – 305 (2007).

    Article  PubMed  Google Scholar 

  5. S. Singh and A. Khar, Anticanc. Agents Med. Chem., 6, 259 – 270 (2006).

    Article  CAS  Google Scholar 

  6. R. K. Maheshwari, A. K. Singh, J. Gaddipati and R. C. Srimal, Life Sci., 78, 2081 – 2087 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. R. A. Sharma, A. J. Gescher and W. P. Steward, Eur. J. Cancer , 41, 1955 – 1968 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. D. P. Chauhan, Curr. Pharm. Des., 8, 1695 – 1706 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. S. C. Thomasset, D. P. Berry, G. Garcea, et al., Int. J. Cancer, 120, 451 – 458 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. M. Lopez-Lazaro, Mol. Nutr. Food Res., 52, 103 – 127 (2008).

    Google Scholar 

  11. Y. Xu, C. Zhan, L. Fan, et al., Int. J. Pharm., 336, 329 – 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Y. J. Kim, H. G. Park, Y. L. Yang, et al., Biol. Pharm. Bull., 28(2), 394 – 397 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. C. K. Siew and P. A. Williams, Biomacromolecules, 6, 963 – 969 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. L.-S. Liu, M. L. Fishman, J. Kost and K. B. Hicks, Biomaterials, 24, 3333 – 3343 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Fang, S. Al-Assaf, G. O. Phillips, et al., Carbohydr. Polym., 72, 334 – 341 (2008).

    Article  CAS  Google Scholar 

  16. P. Sriamornsak, S. Sungthongjeen and S. Puttipipatkhachorn, Carbohydr. Polym., 67(3) 436 – 445 (2007).

    Article  CAS  Google Scholar 

  17. P. Sriamornsak, Int. J. Pharm., 169, 213 – 220 (1998).

    Article  CAS  Google Scholar 

  18. H. H. Tonnesen, Pharmazie, 61(8), 696 – 700 (2006).

    PubMed  Google Scholar 

  19. P. Wakenstrom, S. Kidman, A.-M. Hermansson, et al., Food Hydrocoll., 17, 593 – 603 (2003).

    Article  Google Scholar 

  20. V. Pillay and R. Fassihi, J. Control. Release, 59, 243 – 256 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. L. Xing, C. Dawei, X. Liping and Z. Rongqing, J. Control. Release, 93, 293 – 300 (2003).

    Article  PubMed  Google Scholar 

  22. P. Y. Zhan, X. H. Zeng, XH, H. M. Zhang and H. H. Li, Food Chem., 129 (2), 700 – 703 (2011).

  23. T. C. F. do Nascimento, D. M. Casa, L. F. Dalmolin, et al., Curr. Pharm. Anal., 8(4), 324 – 333 (2012).

  24. M. J. Scotter, LWT Food Sci. Technol., 42, 1345 – 1351 (2009).

    Article  CAS  Google Scholar 

  25. G. Liang, L. Shao, Y. Wang, et al., Bioorg. Medicinal Chem., 17, 2623 – 2631 (2009).

    Article  CAS  Google Scholar 

  26. Y. J. Wang, M. H. Pan, A. L. Cheng, et al., Pharm. Biomed. Anal., 15, 1867 – 1876 (1997).

    Article  CAS  Google Scholar 

  27. P.-H. Bong, Bull. Korean Chem. Soc., 21(1), 81 – 86 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Research Councils of Shiraz University of Medical Sciences (6733), University of Tehran, and the Iran National Science Foundation (INSF) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sattarahmady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattarahmady, N., Moosavi-Movahedi, A.A., Bazzi, P. et al. Improving Pharmaceutical Characteristics of Curcumin by Alginate/Pectin Microparticles. Pharm Chem J 50, 131–136 (2016). https://doi.org/10.1007/s11094-016-1410-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-016-1410-5

Keywords

Navigation