Advertisement

Pharmaceutical Chemistry Journal

, Volume 50, Issue 3, pp 131–136 | Cite as

Improving Pharmaceutical Characteristics of Curcumin by Alginate/Pectin Microparticles

  • N. Sattarahmady
  • A. A. Moosavi-Movahedi
  • P. Bazzi
  • H. Heli
  • S. Pourtakdoust
Article

This study was aimed at the preparation of curcumin-loaded alginate/pectin microparticles (beads) in order to enhance the pharmaceutical effect of curcumin as a drug for colon related diseases. For this purpose, three types of curcumin-loaded beads were prepared with different alginate/pectin ratios (100/0, 75/25 and 50/50) and studied in various experiments including the release of curcumin from beads and swelling of beads in buffer solutions of simulated gastric, intestinal, and colon fluids. The results of curcumin releasing experiments under conditions mimicking stomach to colon transit showed that the beads with higher content of pectin exhibit stronger curcumin entrapment, slower release rate, and lower swelling. Thus, 50/50 alginate/pectin composition has minimum release in the upper parts of gastrointestinal tract (stomach and intestine). However, when these beads reached colonic buffer medium, the curcumin release suddenly increased. Therefore, beads with 50/50 alginate/pectin compositions could be useful as a suitable carrier for curcumin delivery to colon. Moreover, the stability and chemical protection of curcumin encapsulated in these beads was confirmed by high performance liquid chromatography measurements after a period of six months.

Keywords

curcumin delivery system pectin alginate, bead microparticles 

Notes

Acknowledgements

We would like to thank the Research Councils of Shiraz University of Medical Sciences (6733), University of Tehran, and the Iran National Science Foundation (INSF) for supporting this research.

References

  1. 1.
    S. Bisht, G. Feldmann, S. Soni, et al., J. Nanobiotechnol., 5(3), 1 – 18 (2007).Google Scholar
  2. 2.
    H. H. Tonnesen, M. Masson, and T. Loftsson, Int. J. Pharmaceutics, 244, 127 – 135 (2002).CrossRefGoogle Scholar
  3. 3.
    J. J. Johnson and H. Mukhtar, Cancer Lett., 255, 170 – 181 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    S. Shishodia, M. M. Chaturvedi and B. B. Aggarwal, Curr. Probl. Cancer, 31, 243 – 305 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    S. Singh and A. Khar, Anticanc. Agents Med. Chem., 6, 259 – 270 (2006).CrossRefGoogle Scholar
  6. 6.
    R. K. Maheshwari, A. K. Singh, J. Gaddipati and R. C. Srimal, Life Sci., 78, 2081 – 2087 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    R. A. Sharma, A. J. Gescher and W. P. Steward, Eur. J. Cancer , 41, 1955 – 1968 (2005).CrossRefPubMedGoogle Scholar
  8. 8.
    D. P. Chauhan, Curr. Pharm. Des., 8, 1695 – 1706 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    S. C. Thomasset, D. P. Berry, G. Garcea, et al., Int. J. Cancer, 120, 451 – 458 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Lopez-Lazaro, Mol. Nutr. Food Res., 52, 103 – 127 (2008).Google Scholar
  11. 11.
    Y. Xu, C. Zhan, L. Fan, et al., Int. J. Pharm., 336, 329 – 337 (2007).CrossRefPubMedGoogle Scholar
  12. 12.
    Y. J. Kim, H. G. Park, Y. L. Yang, et al., Biol. Pharm. Bull., 28(2), 394 – 397 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    C. K. Siew and P. A. Williams, Biomacromolecules, 6, 963 – 969 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    L.-S. Liu, M. L. Fishman, J. Kost and K. B. Hicks, Biomaterials, 24, 3333 – 3343 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Fang, S. Al-Assaf, G. O. Phillips, et al., Carbohydr. Polym., 72, 334 – 341 (2008).CrossRefGoogle Scholar
  16. 16.
    P. Sriamornsak, S. Sungthongjeen and S. Puttipipatkhachorn, Carbohydr. Polym., 67(3) 436 – 445 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Sriamornsak, Int. J. Pharm., 169, 213 – 220 (1998).CrossRefGoogle Scholar
  18. 18.
    H. H. Tonnesen, Pharmazie, 61(8), 696 – 700 (2006).PubMedGoogle Scholar
  19. 19.
    P. Wakenstrom, S. Kidman, A.-M. Hermansson, et al., Food Hydrocoll., 17, 593 – 603 (2003).CrossRefGoogle Scholar
  20. 20.
    V. Pillay and R. Fassihi, J. Control. Release, 59, 243 – 256 (1999).CrossRefPubMedGoogle Scholar
  21. 21.
    L. Xing, C. Dawei, X. Liping and Z. Rongqing, J. Control. Release, 93, 293 – 300 (2003).CrossRefPubMedGoogle Scholar
  22. 22.
    P. Y. Zhan, X. H. Zeng, XH, H. M. Zhang and H. H. Li, Food Chem., 129 (2), 700 – 703 (2011).Google Scholar
  23. 23.
    T. C. F. do Nascimento, D. M. Casa, L. F. Dalmolin, et al., Curr. Pharm. Anal., 8(4), 324 – 333 (2012).Google Scholar
  24. 24.
    M. J. Scotter, LWT Food Sci. Technol., 42, 1345 – 1351 (2009).CrossRefGoogle Scholar
  25. 25.
    G. Liang, L. Shao, Y. Wang, et al., Bioorg. Medicinal Chem., 17, 2623 – 2631 (2009).CrossRefGoogle Scholar
  26. 26.
    Y. J. Wang, M. H. Pan, A. L. Cheng, et al., Pharm. Biomed. Anal., 15, 1867 – 1876 (1997).CrossRefGoogle Scholar
  27. 27.
    P.-H. Bong, Bull. Korean Chem. Soc., 21(1), 81 – 86 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Sattarahmady
    • 1
    • 4
  • A. A. Moosavi-Movahedi
    • 2
  • P. Bazzi
    • 2
  • H. Heli
    • 3
    • 4
  • S. Pourtakdoust
    • 2
  1. 1.Department of Medical Physics, School of MedicineShiraz University of Medical SciencesShirazIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  3. 3.Department of Nanomedicine, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  4. 4.Nanomedicine and Nanobiology Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations