Advertisement

Pharmaceutical Chemistry Journal

, Volume 49, Issue 8, pp 559–563 | Cite as

Modification of PMR Spectroscopy Technique for Determination of the Molar Substitution in Hydroxyethyl Starch

  • N. E. Kuz’mina
  • S. V. Moiseev
  • V. I. Krylov
  • O. V. Knyaz’kina
  • V. A. Yashkir
  • V. A. Merkulov
STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL

The PMR spectroscopy technique for determining the molar substitution (MS) in hydroxyethyl starch (HES) was modified. It was shown that allowance for integrated intensities of resonances for anomeric H(1) protons of terminal and branching substituted and unsubstituted α-D-glucopyranose residues in HES decreased the calculated MS values and eliminated differences in the MS values obtained by PMR spectroscopy and gas chromatography.

Keywords

hydroxyethyl starch molar substitution molar substitution determination technique 

References

  1. 1.
    S. S. Petrikov, V. V. Krylov, and Yu. V. Titova, Intensiv. Ter., No. 2, 11 – 15 (2008).Google Scholar
  2. 2.
    I. V. Molchanov, O. A. Gol’dina, and Yu. V. Gorbachevskii, Hydroxyethyl Starch Solutions – Modern and Effective Plasma Substitutes for Infusion Therapy [in Russian], Izd. NTsSSKh im. A. N. Bakuleva RAMN, Moscow (1998).Google Scholar
  3. 3.
    D. V. Dmitriev, Med. Neotlozh. Sostoyanii, 49(2), 68 – 74 (2013).Google Scholar
  4. 4.
    A. V. Panov, Author’s Abstract of a Candidate Dissertation, Moscow (2009).Google Scholar
  5. 5.
    N. E. Kuz’mina, S. V. Moiseev, V. I. Krylov, et al., Zh. Anal. Khim., 70(1), 30 – 36 (2015).Google Scholar
  6. 6.
    N. E. Kuz’mina, S. V. Moiseev, V. I. Krylov, et al., Zh. Anal. Khim., 70(7), 727 – 733 (2015).Google Scholar
  7. 7.
    M. Westphal, M. F. James, S. Kozek-Langenecker, et al., Anesthesiology, 111, 187 – 202 (2009).CrossRefPubMedGoogle Scholar
  8. 8.
    01 / 2011:1785 Starches, hydroxyethyl, European Pharmacopoeia, 7th Ed., European Department for the Quality of Medicines,Strasbourg (2011), p. 2984.Google Scholar
  9. 9.
    E. P. Prokof’ev and O. A. Yurin, Khim.-farm. Zh., 24(7), 82 – 84 (1990).Google Scholar
  10. 10.
    V. F. Traven’, A. V. Panov, S. M. Dolotov, et al., Khim. Rastit. Syr’ya, No. 3, 57 – 61 (2009).Google Scholar
  11. 11.
    H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 62, 7512 – 7515 (1997).CrossRefPubMedGoogle Scholar
  12. 12.
    P. J. Hore, Methods Enzymol., 176, 64 – 77 (1989).CrossRefPubMedGoogle Scholar
  13. 13.
    I. L. Knunyants (chief ed.), Chemical Encyclopedia, Vol. 2, Large Russian Encyclopedia [in Russian], Moscow (1990), p. 498.Google Scholar
  14. 14.
    S. S. Leeuwen, B. R. Leeflang, G. J. Gerwing, et al., Carbohydr. Res., 343, 1114 – 1119 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    G. S. Nilsson, L. Gorton, K.-E. Bergquist, and U. Nilsson, Starch, 48(10), 352 – 357 (1996).CrossRefGoogle Scholar
  16. 16.
    M. J. Gidley, Carbohydr. Res., 139, 85 – 93 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. E. Kuz’mina
    • 1
  • S. V. Moiseev
    • 1
  • V. I. Krylov
    • 1
  • O. V. Knyaz’kina
    • 1
  • V. A. Yashkir
    • 1
  • V. A. Merkulov
    • 1
  1. 1.State Scientific Center for Expertise of Medicinal ProductsMinistry of Public Health of the Russian FederationMoscowRussia

Personalised recommendations