Advertisement

Pharmaceutical Chemistry Journal

, Volume 49, Issue 8, pp 554–558 | Cite as

Synthesis and Molecular-Weight Characteristics of N-Oxidized Copolymers of N-Vinylpyrrolidone and 2-Methyl-5-Vinylpyridine

  • E. V. Vorfolomeeva
  • S. A. Kedik
  • A. V. Panov
  • E. S. Zhavoronok
  • Yu. S. Efimov
  • M. S. Starchenkova
  • D. V. Vasil’eva
  • G. V. Zatonskii
DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • 44 Downloads

Aseries of N-oxides of N-vinylpyrrolidone and 2-methyl-5-vinylpyridine copolymers with various degrees of oxidation were prepared via oxidation of the copolymers by peracetic acid. The N-oxidation kinetic rate constants were calculated using UV spectrophotometry. The temperature dependence of the limiting N-oxidation was determined. The molecular-weight characteristics of the N-oxidized copolymers were established using 13C NMR methods. An approach based on direct UV spectrophotometry was proposed for practical monitoring of the reaction completion (degree of conversion).

Keywords

N-vinylpyrrolidone 2-methyl-5-vinylpyridine copolymer N-oxidation UV spectroscopy 13C NMR spectroscopy 

References

  1. 1.
    F. P. Sidel’kovskaya, Chemistry of N-Vinylpyrrolidone and Its Polymers [in Russian], Nauka, Moscow (1970).Google Scholar
  2. 2.
    Yu. E. Kirsh, Poly-N-vinylpyrrolidone and Other Poly-N-vinylamides: Synthesis and Physicochemical Properties [in Russian], Nauka, Moscow (1988).Google Scholar
  3. 3.
    Senoo Manabu (ed.), Medical Polymers [in Russian], Meditsina, Moscow (1981).Google Scholar
  4. 4.
    N. A. Plate and A. E. Vasil’ev, Physiologically Active Polymers [in Russian], Khimiya, Moscow (1986).Google Scholar
  5. 5.
    S. A. Kedik, A. V. Panov, I. V. Sakaeva, et al., Khim.-farm. Zh., 46(8), 19 – 22 (2012); Pharm. Chem. J., 46(8), 478 – 481 (2012).Google Scholar
  6. 6.
    S. A. Kedik, D. V. Eremin, Yu. V. Kochkina, et al., Vestn. MITKhT, 9(1), 64 – 67 (2014).Google Scholar
  7. 7.
    E. K. Fedorov, O. E. Lobanov, L. F. Mosalova, et al., Vysokomol. Soedin., Ser. A, 36(9), 1446 – 1451 (1994).Google Scholar
  8. 8.
    S. A. Kedik, A. V. Panov, V. V. Suslov, et al., Khim.-farm. Zh., 47(6), 33 – 34 (2013); Pharm. Chem. J., 47(6), 318 – 320 (2013).Google Scholar
  9. 9.
    A. R. Katritzky and J. M. Lagowski, Chemistry of the Heterocyclic N-oxides, Academic Press, London, New York (1971), p. 587.Google Scholar
  10. 10.
    N. I. Bogdanskaya and M. S. Tolgskaya, Gig. Sanit., 4, 102 – 104 (1973).Google Scholar
  11. 11.
    S. N. Borodulina, I. Ya. Postovksij, G. V. Aronova, et al., SU Pat. No. 928,803, Appl. Feb. 11, 1980, Publ. May 15, 1982; Byull. Izobret., No. 18, 1982).Google Scholar
  12. 12.
    X.-B. Zhao, T. Zhang, and Y.-J. Zhou, Chin. J. Process Eng., 8(1), 35 – 41 (2008).Google Scholar
  13. 13.
    GOST R ISO 5725-2-2002, Part 2, Basic method for determining the repeatability and reproducibility of a standard measurement method (5725-2-2002-1, 5725-2-2002-2, 5725-2-2002-3).Google Scholar
  14. 14.
    Spectral Database for Organic Compounds, SDBS; http: // sdbs.db.aist.go.jp / sdbs / cgi-bin / cre index.cgi (2015).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. V. Vorfolomeeva
    • 1
    • 2
  • S. A. Kedik
    • 1
    • 2
  • A. V. Panov
    • 1
    • 2
  • E. S. Zhavoronok
    • 1
    • 2
  • Yu. S. Efimov
    • 2
  • M. S. Starchenkova
    • 1
  • D. V. Vasil’eva
    • 1
  • G. V. Zatonskii
    • 2
  1. 1.M. V. Lomonosov Moscow State University of Fine Chemical Technologies (MITKhT)MoscowRussia
  2. 2.Institute of Pharmaceutical TechnologiesMoscowRussia

Personalised recommendations