Pharmaceutical Chemistry Journal

, Volume 49, Issue 6, pp 419–424 | Cite as

Rapid Chromatographic Determination and Structural Confirmation of β-Hydroxy Acid Form of Lovastatin in the Fermentation Broth of Aspergillus Terreus PM03

  • R. H. Patil
  • M. P. Patil
  • V. L. Maheshwari

Lovastatin, a fungal secondary metabolite, competitively inhibits 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase, which catalyzes the rate limiting step in the biosynthesis of cholesterol. Preparative thin-layer chromatography (TLC) followed by RP-HPLC was used for determination of lovastatin in the fermentation broth of Aspergillus terreus PM03. The TLC separated bands were cut, recovered, and analyzed by HPLC. The proposed HPLC method used a mobile phase comprising 1 : 1 mixture of acetonitrile and deionized water at a flow rate of 2 mL/min and spectrophotometric detection at a wavelength of 238 nm. The chromatograph revealed a single, sharp and symmetric peak at a retention time of 6.8 min that corresponded to an open β-hydroxy acid form and was comparable to the peak of standard β-hydroxy acid form of lovastatin with respect to both retention time and optical absorption at 238 nm. The data of UV–VIS and FTIR spectroscopy confirmed the presence of lovastatin in the purified extract. The structure of the obtained product was also confirmed by LC-MS and NMR analyses.


lovastatin Aspergillus terreus TLC HPLC FTIR 


  1. 1.
    American Heart Association (New York), 16, 250 (2001).Google Scholar
  2. 2.
    A. Alberts, J. Chen, G. Kuron, et al., Proc. Natl. Acad. Sci. USA, 77(1), 57 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Kysilka and V. Ken, J. Chromatogr., 630, 415 (1993).CrossRefGoogle Scholar
  4. 4.
    M. Kumar, S. Jana, V. Senthil, et al., J. Microbiol. Meth., 40, 99 (2000).CrossRefGoogle Scholar
  5. 5.
    J. López Casas, J. Sánchez Pérez, J. Fernández Sevilla, et al., J. Biotechnol., 116(1), 61 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Friedrich, M. Zuzek, M. Bencina, et al., J. Chromatogr. A, 74, 363 (1995).CrossRefGoogle Scholar
  7. 7.
    H. Valera, J. Gomesa, S. Lakshmi, et al., Enzyme Microb. Technol., 30, 1 (2005).Google Scholar
  8. 8.
    A. Mahmoud, Y. Nagiba, A. Nariman, and M. Elragehy, J. Adv. Res., 4, 173 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Stubbs, M. Schwartz andW. Bayne, J. Chromatogr, 383, 438 (1986).Google Scholar
  10. 10.
    C. Bell and Wahlich, Lovastaitn, in: Analysis of Drugs, Academic Press, New York (2000).Google Scholar
  11. 11.
    Z. Jemal, B. Ouyang, D. Chen and C. Teitz, Rapid Commun Spectrosc., 13, 1003 (1999).CrossRefGoogle Scholar
  12. 12.
    R. Stubblefield and O. Shotwell, AOAC, 60, 784 (1997).Google Scholar
  13. 13.
    H. Chang, J. Devries andW. Hobbs, AOAC, 62(6), 1281 (1979).Google Scholar
  14. 14.
    J. Chan, R. Moore, J. Nakashima and J. Vederas, J. Am Chem. Soc., 105, 33 (1998).Google Scholar
  15. 15.
    J. Moore, G. Bigam, J. Chan and T. Hogg, J. Am. Chem Soc., 107, 3694 (1999).CrossRefGoogle Scholar
  16. 16.
    L. Nováková, H. Vlèková, D. Šatínský, et al., J. Chromatogr. B, 877, 2093(2009).CrossRefGoogle Scholar
  17. 17.
    H. Vlèková, D. Solichová, M. Bláha, et al., J. Pharm. Biomed. Anal., 55, 301 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Wu, J. Zhao, J. Henion, et al., J. Mass Spectrom., 10, 379 (1997).CrossRefGoogle Scholar
  19. 19.
    B. Mertens, B. Cahay, R. Klinkenberg and B. Streel, J. Chromatogr. A, 1189, 493 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    S. Polagani, N. Pilli and V. Gandu, J. Pharm. Anal., 5, 305 (2012).Google Scholar
  21. 21.
    R. Raghunath, A. Radhakrishna, J. Angayarkanni, and M. Palaniswamy, Int. J. Appl. Biopharm. Technol., 3, 342 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Microbiology, R. C. Patel Arts, Commerce and Science CollegeShirpurIndia
  2. 2.Department of Biochemistry, School of life sciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations