Advertisement

Pharmaceutical Chemistry Journal

, Volume 49, Issue 4, pp 220–230 | Cite as

Prospects for Using Gold, Silver, and Iron Oxide Nanoparticles for Increasing the Efficacy of Chemotherapy

  • T. A. Fedotcheva
  • A. Yu. Olenin
  • K. M. Starostin
  • G. V. Lisichkin
  • V. V. Banin
  • N. L. Shimanovskii
Article

Modern concepts about nanosized conjugates of gold, silver, and iron oxide nanoparticles with antitumor drugs that are intended for chemotherapy of oncological diseases are reviewed. The main possibilities for increasing the safety and efficacy of chemotherapy with the aid of such metal-nanoparticle—antitumor-drug conjugates are shown. Among these possibilities, the most important in practice are targeted drug delivery, controlled drug release, and suppression of multiple drug resistance of tumor cells. An analysis of the advantages and drawbacks of biomedical applications of various metal nanoparticles for antitumor therapy shows good prospects for using conjugates of iron oxide nanoparticles with antitumor drugs, in particular, with doxorubicin. The expediency of creating these nanocomplexes is justified by the possibility of their magnetic-driven delivery, controlled biodistribution, selective toxicity, and relatively simple synthesis.

Keywords

nanoparticles gold silver mixed iron oxide tumors multiple drug resistance targeted delivery controlled release targeted delivery systems drug nanocarriers 

References

  1. 1.
    M. V. Kulikova and V. I. Kochubei, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 14(4), 206 – 209 (2012).Google Scholar
  2. 2.
    T. A. Yurmazova, A. I. Galanov, G. G. Savel’ev, et al., Izv. Tomsk. Politekh. Univ., 314(3), 45 – 49 (2009).Google Scholar
  3. 3.
    A. G. Akopdzhanov, A. I. Sergeev, E. V. Manvelov, et al., Eksp. Klin. Farmakol., 73(6), 23 – 28 (2010).PubMedGoogle Scholar
  4. 4.
    I. C. Macdougall, W. E. Strauss, and J. McLaughlin, Clin. J. Am. Soc. Nephrol., 9(4), 705 – 712 (2014).PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    D. Paredes, C. Ortiz, and R. Torres, Int. J. Nanomed., 3(9), 1717 – 1729 (2014).Google Scholar
  6. 6.
    S. Pandey, G. Oza, A. Mewada, et al., J. Mater. Chem. B, 1(9), 1361 – 1370 (2013).CrossRefGoogle Scholar
  7. 7.
    N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, et al., Ross. Nanotekhnol., 2(3 – 4), 69 – 86 (2007).Google Scholar
  8. 8.
    S. Bhattacharyya, R. A. Kudgus, R. Bhattacharya, et al., Pharm. Res., 28(2), 237 – 259 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    M. D. Hall, H. R. Mellor, R. Callaghan, et al., J. Med. Chem., 50(15), 3403 – 3411 (2007).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Gao, G. Liang, B. Zhang, et al., J. Am. Chem. Soc., 129(5), 1428 – 1433 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    Z. P. Xu, Q. H. Zeng, G. Q. Lu, et al., Chem. Eng. Sci., 61, 1027 – 1040 (2006).CrossRefGoogle Scholar
  12. 12.
    V. N. Nikiforov, Izv. AIN im. A. M. Prokhorova, No. 1, 23 – 34 (2013).Google Scholar
  13. 13.
    N. J. Farrer, L. Salassa, P. J. Sadler, et al., Dalton Trans., 48, 10690 – 10701 (2009).PubMedCrossRefGoogle Scholar
  14. 14.
    A. P. Alivisatos, W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng., 7, 55 – 76 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    Z. P. Xu, Q. H. Zeng, G. Q. Lu, et al., Chem. Eng. Sci., 61, 1027 – 1040 (2006).CrossRefGoogle Scholar
  16. 16.
    S. F. Lee, X. M. Zhu, Y. X. Wang, et al., ACS Appl. Mater. Interfaces, 5(5), 1566 – 1574 (2013).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Matsumura and H. Maeda, Cancer Res., 46, 6387 – 6392 (1986).PubMedGoogle Scholar
  18. 18.
    Z. Gao, L. Zhang, and Y. Sun, J. Controlled Release, 162(1), 45 – 55 (2012).CrossRefGoogle Scholar
  19. 19.
    S. K. Hobbs, W. L. Monsky, F. Yuan, et al., Proc. Natl. Acad. Sci. USA, 95, 4607 – 4612 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    D. R. Siwak, A. M. Tari, and G. Lopez-Berestein, Clin. Cancer Res., 8, 955 – 956 (2002).PubMedGoogle Scholar
  21. 21.
    H. Hashizume, P. Baluk, S. Morikawa, et al., Am. J. Pathol., 156, 1363 – 1380 (2000).PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    M. Hamidi, P. Rafiei, and A. Azadi, Expert Opin. Drug Discovery, 3, 1293 – 1307 (2008).CrossRefGoogle Scholar
  23. 23.
    D. E. Owens III and N. A. Peppas, Int. J. Pharm., 307, 93 – 102 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Bhadra, S. Bhadra, P. Jain, et al., Pharmazie, 57, 5 – 29 (2002).PubMedGoogle Scholar
  25. 25.
    M. Hamidi, A. Azadi, and P. Rafiei, Adv. Drug Delivery Rev., 60, 1638 – 1649 (2008).CrossRefGoogle Scholar
  26. 26.
    D. Bazile, C. Prud’homme, M. T. Bassoullet, et al., J. Pharm. Sci., 84, 493 – 498 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Gabizon and D. Papahadjopoulos, Proc. Natl. Acad. Sci. USA, 85, 6949 – 6953 (1988).PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    H. S. Choi, W. Liu, F. Liu, et al., Nat. Nanotechnol., 5, 42 – 47 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    A. K. Gupta and M. Gupta, Biomaterials, 26, 3995 – 4021 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    S. D. Li and L. Huang, Mol. Pharm., 3, 579 – 588 (2006).PubMedCrossRefGoogle Scholar
  31. 31.
    C. M. Galmarini, G. Warren, M. T. Senanayake, et al., Int. J. Pharm., 395, 281 – 289 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    J. Jiang, S. J. Yang, J. C. Wang, et al., Eur. J. Pharm. Biopharm., 76, 170 – 178 (2010).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Liu and B. Thierry, Langmuir, 28, 15634 – 15642 (2012).PubMedCrossRefGoogle Scholar
  34. 34.
    E. T. M. Dams, P. Laverman, W. J. G. Oyen, et al., J. Pharmacol. Exp. Ther., 292(3), 1071 – 1079 (2000).PubMedGoogle Scholar
  35. 35.
    T. Ishida and H. Kiwada, Int. J. Pharm., 354(1 – 2), 56 – 62 (2008).PubMedCrossRefGoogle Scholar
  36. 36.
    X. Wang, T. Ishida, and H. Kiwada, J. Controlled Release, 119(2), 236 – 244 (2007).CrossRefGoogle Scholar
  37. 37.
    B. Romberg, C. Oussoren, C. J. Snel, et al., Biochim. Biophys. Acta, 1768(3), 737 – 743 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Xu, K. Q. Wang, Y. H. Deng, et al., Biomaterials, 31(17), 4757 – 4763 (2010).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Ishihara, T. Maeda, H. Sakamoto, et al., Biomacromolecules, 11(10), 2700 – 2706 (2010).PubMedCrossRefGoogle Scholar
  40. 40.
    M. E. Davis, Z. G. Chen, and D. M. Shin, Nat. Rev. Drug Discovery, 7, 771 – 782 (2008).PubMedCrossRefGoogle Scholar
  41. 41.
    F. Shen, S. Chu, A. K. Bence, et al., J. Pharmacol. Exp. Ther., 324, 95 – 102 (2008).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Kunjachan, A. Blauz, D. Mockel, et al., Eur. J. Pharm. Sci., 45, 421 – 428 (2012).PubMedCrossRefGoogle Scholar
  43. 43.
    F. M. Kievit, F. Y. Wang, C. Fang, et al., J. Controlled Release, 152, 76 – 83 (2011).CrossRefGoogle Scholar
  44. 44.
    N. I. Fedotcheva, V. V. Teplova, T. A. Fedotcheva, et al., Biochem. Pharmacol., 78(8), 1060 – 1068 (2009).PubMedCrossRefGoogle Scholar
  45. 45.
    F. Wang, Y. C. Wang, S. Dou, et al., ACS Nano, 5(5), 3679 – 3692 (2011).PubMedCrossRefGoogle Scholar
  46. 46.
    J. A. Khan, R. A. Kudgus, A. Szabolcs, et al., PLoS One, 6(6), e20347 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    N. Chanda, V. Kattumuri, R. Shukla, et al., Proc. Natl. Acad. Sci. USA, 11, 107(19), 8760 – 8765 (2010).Google Scholar
  48. 48.
    H. Chen, S. Li, B. Li, et al., Nanoscale, 4(19), 6050 – 6064 (2011).CrossRefGoogle Scholar
  49. 49.
    T. A. Fedotcheva, E. V. Odintsova, N. L. Shimanovskii, et al., Vestn. Ross. Akad. Med. Nauk, 9, 42 – 50 (2010).PubMedGoogle Scholar
  50. 50.
    E. A. Ricke, K. Williams, Y.-F. Lee, et al., Carcinogenesis, 33(7), 1391 – 1398 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    E. D. Dreaden, S. C. Mwakwari, Q. H. Sodji, et al., Bioconjugate Chem., 20(12), 2247 – 2253 (2009).CrossRefGoogle Scholar
  52. 52.
    S. Garg, A. De, T. Nandi, et al., AAPS PharmSciTech, 14(3), 1219 – 1226 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    S. J. Berners-Price, G. R. Girard, D. T. Hill, et al., J. Med. Chem., 33, 1386 – 1392 (1990).PubMedCrossRefGoogle Scholar
  54. 54.
    S. D. Brown, P. Nativo, J. A. Smith, et al., J. Am. Chem. Soc., 132(13), 4678 – 4684 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    T. A. Fedotcheva, N. L. Shimanovskii, A. G. Kruglov, et al., Biol. Membr., 28(6), 1 – 8 (2011).Google Scholar
  56. 56.
    P. Ma and R. J. Mumper, Nano Today, 8(3), 313 – 331 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    W.-H. Chen, X.-D. Xu, H.-Z. Jia, et al., Biomaterials, 34(34), 8798 – 8807 (2013).PubMedCrossRefGoogle Scholar
  58. 58.
    R. Govender, A. Phulukdaree, R. M. Gengan, et al., J. Nanobiotechnol., doi: 10.1186 / 1477 – 3155 – 11 – 5 (2013).Google Scholar
  59. 59.
    M. A. Franco-Molina, E. Mendoza-Gamboa, C. A. Sierra-Rivera, et al., J. Exp. Clin. Cancer Res., 29, 148 – 151 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    M. Jeyaraj, M. Rajesh, R. Arun, et al., Colloids Surf., B, 102, 708 – 717 (2013).Google Scholar
  61. 61.
    R. Sankar, A. Karthik, A. Prabu, et al., Colloids Surf., B, 108, 80 – 84 (2013).Google Scholar
  62. 62.
    K. S. Kim, S.-J. Park, M.-Y. Lee, et al., Macromol. Res., 20(3), 277 – 282 (2012).CrossRefGoogle Scholar
  63. 63.
    C. Ong, J. Z. Lim, C. T. Ng, et al., Curr. Med. Chem., 20(6), 772 – 781 (2013).PubMedGoogle Scholar
  64. 64.
    N. L. Shimanovskii, Ross. Khim. Zh., LVI(3 – 4), 126 – 145 (2012).Google Scholar
  65. 65.
    S. R. Dave and X. Gao, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 1(6), 583 – 609 (2009).Google Scholar
  66. 66.
    M. Di Marco, C. Sadun, M. Port, et al., Int. J. Nanomed., 2(4), 609 – 622 (2007).Google Scholar
  67. 67.
    S. Saito, M. Tsugeno, D. Koto, et al., Int. J. Nanomed., 7, 5415 – 5421 (2012).Google Scholar
  68. 68.
    E. A. Neuwelt, B. E. Hamilton, C. G. Varallyay, et al., Kidney Int., 75, 465 – 474 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    G. Gambarota, W. Leenders, C. Maass, et al., Br. J. Cancer, 98(11), 1784 – 1789 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    N. L. Shimanovskii, M. A. Epinetov, and M. Ya. Mel’nikov, Molecular and Nanopharmacology [in Russian], Moscow (2010).Google Scholar
  71. 71.
    P. P. Gorbik, I. V. Dubrovin, A. L. Petranovskaya, et al., Surface: Interdepartmental Collection of Scientific Works [in Russian], Nauk. Dumka, Kiev, (2)17, 287 – 297 (2010).Google Scholar
  72. 72.
    W. Wu, B. Chen, J. Cheng, et al., Int. J. Nanomed., 5, 1079 – 1084 (2010).Google Scholar
  73. 73.
    K. Golla, B. Cherukuvada, F. Ahmed, et al., PLoS One, 7(12), e51960 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    M. Malekigorji, A. D. M. Curtis, and C. Hoskins, J. Nanomed. Res., 1, No. 1 DOI:  10.15406/jnmr.2014.01.00004 (2014).
  75. 75.
    C.-L. Dai, H.-Y. Xiong, L.-F. Tang, et al., Cancer Chemother. Pharmacol., 60, 741 – 750 (2007).PubMedCrossRefGoogle Scholar
  76. 76.
    D. J. Yamashiro and F. R. Maxfield, Trends Pharmacol. Sci., 9, 190 – 193 (1988).PubMedCrossRefGoogle Scholar
  77. 77.
    Y. J. Gu, J. Cheng, C. W. Man, et al., Nanomedicine (London, U. K.), 8, 204 – 211 (2012).Google Scholar
  78. 78.
    S. Yadav, L. E. van Vlerken, S. R. Little, et al., Cancer Chemother. Pharmacol., 63, 711 – 722 (2009).PubMedCrossRefGoogle Scholar
  79. 79.
    S.-F. Lee, X.-M. Zhu, Y.-X. J. Wang, et al., ACS Appl. Mater. Interfaces, 5, 1566 – 1574 (2013).PubMedCrossRefGoogle Scholar
  80. 80.
    G. Y. Lee, W. P. Qian, L. Wang, et al., ACS Nano, 7(3), 2078 – 2089 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    J. Nam,W. G. La, S. Hwang, et al, ACS Nano, 7(4), 3388 – 3402 (2013).PubMedCrossRefGoogle Scholar
  82. 82.
    L. Jabr-Milane, L. van Vlerken, H. Devalapally, et al., J. Controlled Release, 130(2), 121 – 128 (2008).CrossRefGoogle Scholar
  83. 83.
    K. Engin, D. B. Leeper, J. R. Cater, et al., Int. J. Hyperthermia, 11, 211 – 216 (1995).PubMedCrossRefGoogle Scholar
  84. 84.
    N. Altan, Y. Chen, M. Schindler, et al., J. Exp. Med., 187, 1583 – 1598 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    A. K. Larsen, A. E. Escargueil, and A. Skladanowski, Pharmacol. Ther., 85, 217 – 229 (2000).PubMedCrossRefGoogle Scholar
  86. 86.
    Y. Shen, H. Tang, Y. Zhan, et al., Nanomedicine (London, U. K.), 5, 192 – 201 (2009).Google Scholar
  87. 87.
    U. Kedar, P. Phutane, S. Shidhaye, et al., Nanomedicine (London, U. K.), 6, 714 – 729 (2010).Google Scholar
  88. 88.
    A. L. Nikolaev, A. V. Gopin, V. E. Bozhevol’nov, et al., Ross. Khim. Zh., LVII(2), 83 – 99 (2013).Google Scholar
  89. 89.
    A. L. Nikolaev, A. V. Gopin, V. E. Bozhevol’nov, et al., Akust. Zh., 55(4 – 5), 565 – 574 (2009).Google Scholar
  90. 90.
    N. V. Andronova, E. M. Treshchalina, B. I. Dolgushin, et al., Med. Fiz., 3, 46 – 52 (2010).Google Scholar
  91. 91.
    L. Milane, S. Ganesh, S. Shah, et al., J. Controlled Release, 155, 237 – 247 (2011).CrossRefGoogle Scholar
  92. 92.
    C. S. Kumar and F. Mohammad, Adv. Drug Delivery Rev., 63(9), 789 – 808 (2011).CrossRefGoogle Scholar
  93. 93.
    S. Guo and L. Huang, J. Nanomater., 201, doi:  10.1155/2011/742895 (2011).
  94. 94.
    A. E. Nel, L. Madler, D. Velego, et al, Nat. Mater., 8, 543 – 557 (2009).PubMedCrossRefGoogle Scholar
  95. 95.
    C. Liu, G. Zhao, J. Liu, et al., J. Controlled Release, 140, 277 – 283 (2009).CrossRefGoogle Scholar
  96. 96.
    M. Saad, O. B. Garbuzenko, T. Minko, et al., Nanomedicine (London, U. K.), 3, 761 – 776 (2008).CrossRefGoogle Scholar
  97. 97.
    C.Wu, F. Gong, P. Pang, et al., PLoS One, 8(6), e66416 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    S. Guo, Y. Huang, Q. Jiang, et al., ACS Nano, 4(9), 5505 – 5511 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    D. Guo, C.Wu, H. Jiang, et al., J. Photochem. Photobiol., B, 93, 119 – 126 (2008).CrossRefGoogle Scholar
  100. 100.
    H. L. Lu, W. J. Syu, N. Nishiyama, et al., J. Controlled Release, 155, 458 – 464 (2011).CrossRefGoogle Scholar
  101. 101.
    R. Li, R. Wu, L. Zhao, et al., ACS Nano, 4, 1399 – 1408 (2010).PubMedCrossRefGoogle Scholar
  102. 102.
    E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, et al., Biomaterials, 33, 1821 – 1826 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    T. Simon, S. Boca-Farcau, A. M. Gabudean, et al., J. Biophotonics, 11 – 12, 950 – 959 (2013).CrossRefGoogle Scholar
  104. 104.
    M. Trapani, A. Romeo, T. Parisi, et al., RSC Adv. 3(16), 5607 – 5614 (2013).CrossRefGoogle Scholar
  105. 105.
    S. Yu. Vasil’chenko, A. V. Ryabova, A. A. Stratonikov, et al., in: Materials of the VIIth All-Russian Scientific-Practical Conference with International Participation “Domestic Antitumor Drugs” [in Russian], Moscow (2008), p. 293.Google Scholar
  106. 106.
    B. Khlebtsov, E. Panfilova, V. Khanadeev, et al., ACS Nano, 5(9), 7077 – 7089 (2011).PubMedCrossRefGoogle Scholar
  107. 107.
    S. Febvay, D. M. Marini, A. M. Belcher, et al., Nano Lett., 10, 2211 – 2219 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    C. M. Pitsillides, E. K. Joe, X. Wei, et al., Biophys. J., 84(6), 4023 – 4032 (2003).PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    C. Sanchez Lopez de Pablo, J. J. Olmedo, A. Rosales, et al., Nanoscale Res. Lett., 9(8), 441 (2014).PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    V. N. Nikiforov, Izv. AIN im. A. M. Prokhorova, No. 1, 23 – 34 (2008).Google Scholar
  111. 111.
    T. Niidome, M. Yamagata, Y. Okamoto, et al., J. Controlled Release, 114(3), 343 – 347 (2006).CrossRefGoogle Scholar
  112. 112.
    N. L. Shimanovskii, V. N. Kulakov, E. Yu. Grigor’eva, et al., Ross. Bioterapevticheskii Zh., 10(2), 25 – 32 (2011).Google Scholar
  113. 113.
    K. M. Krishnan, IEEE Trans. Magn., 46(7), 2523 – 2558 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    M. G. Weimuller, M. Zeisberger, K. M. Krishnan, et al., J. Magn. Magn. Mater., 321, 1947 – 1950 (2009).CrossRefGoogle Scholar
  115. 115.
    A. V. Kirilenko, V. F. Chekhun, I. P. Kondratenko, et al., Dopov. Nats. Akad. Nauk Ukr., 11, 183 – 190 (2009).Google Scholar
  116. 116.
    Q. A. Pankhurst, J. Connolly, S. K. Jones, et al., J. Phys. D: Appl. Phys., 36, 167 – 181 (2003).CrossRefGoogle Scholar
  117. 117.
    V. K. Khlebnikov, Kh. M. Vishvasrao, M. A. Sokol’skaya, et al., Vestn. MITKHT, 7(1), 66 – 70 (2012).Google Scholar
  118. 118.
    V. Yu. Naumenko, A. G. Akopdzhanov, A. V. Babich, et al., Biomed. Radioelektron., 12, 19 – 27 (2011).Google Scholar
  119. 119.
    S. Laurent, S. Dutz, U. O. Hafeli, et al., Adv. Colloid Interface Sci., 166(1 – 2), 8 – 23 (2011).PubMedCrossRefGoogle Scholar
  120. 120.
    O. V. Melnikov, O. Yu. Gorbenko, M. N. Markelova, et al., J. Biomed. Mater. Res. Part A, 91(4), 1048 – 1055 (2009).CrossRefGoogle Scholar
  121. 121.
    V. A. Atsarkin, A. A. Generalov, V. V. Demidov, et al., J. Magn. Magn. Mater., 321, 3198 – 3202 (2009).CrossRefGoogle Scholar
  122. 122.
    G. V. Duong, S. R. Turtelli, W. C. Nunes, et al., J. Non-Cryst. Solids, 353(8 – 10), 805 – 807 (2007).CrossRefGoogle Scholar
  123. 123.
    N. A. Brusentsov, V. A. Polyanskii, Yu. A. Pirogov, et al., Khim-farm. Zh., 44(6), 8 – 11 (2010); Chem. Pharm. J., 44(6), 291 – 295 (2010).Google Scholar
  124. 124.
    T. A. Fedotcheva, N. I. Fedotcheva, V. V. Teplova, et al., Vopr. Biol. Med. Farm. Khim., 11, 158 – 163 (2013).Google Scholar
  125. 125.
    S. K. Libutti, G. F. Paciotti, A. A. Byrnes, et al., Clin. Cancer Res., 16(24), 6139 – 6149 (2010).PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. A. Fedotcheva
    • 1
    • 3
  • A. Yu. Olenin
    • 2
  • K. M. Starostin
    • 1
  • G. V. Lisichkin
    • 2
  • V. V. Banin
    • 3
  • N. L. Shimanovskii
    • 1
  1. 1.Pirogov Russian National Research Medical UniversityMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Scientific Center for Biomedical TechnologiesAll-Russian Research Institute of Medicinal and Aromatic Plants (VILAR)MoscowRussia

Personalised recommendations