Advertisement

Pharmaceutical Chemistry Journal

, Volume 49, Issue 2, pp 111–119 | Cite as

XXI Century: How Our Notions About Liposomal Drugs Have Been Transformed

  • I. M. Bushmakina
  • M. A. Martynova
  • E. V. Knyazeva
DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY

Modern concepts about the development of nano-sized drug carriers were reviewed using liposomes as an example. The history of liposome research including their structure, properties, interaction with molecules, and use as drug-delivery reservoirs was briefly discussed. Medical advantages of liposomal drugs were compared with those of traditional drugs. Strategies for increasing the efficiency of incorporating drugs into liposomes and stabilizing liposomal drugs and the mechanisms of their interactions with cells were discussed.

Keywords

liposomes lipid peroxidation cholesterol antioxidants 

References

  1. 1.
    K. Andrieux and P. Couvreur, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5(1), 463 – 474 (2009).CrossRefGoogle Scholar
  2. 2.
    R. J. Passarella, D. E. Spratt, A. E. van der Ende, et al., Cancer Res., 70(11), 4550 – 4559 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Y. M. Park, S. J. Lee, Y. S. Kim, et al., Immune Netw., 13(5), 177 – 183 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    E. V. Tazina, K. V. Kostin, and N. A. Oborotova, Khim.-farm. Zh., 45(8), 30 – 40 (2011); Pharm. Chem. J., 45(8), 481 – 490 (2011).Google Scholar
  5. 5.
    G. L. Gurevich, Doctoral Dissertation in Medical Sciences, Minsk, 1996.Google Scholar
  6. 6.
    N. L. Leparskaya, G. M. Sorokoumova, Yu. V. Sycheva, et al., Vestn. MITKhT, 6(2), 37 – 42 (2011).Google Scholar
  7. 7.
    N. M. Litvinko, in: Abstracts of Papers of the IInd International Conf., Minsk, 2006.Google Scholar
  8. 8.
    A. K. Sariev, D. A. Abaimov, and R. D. Seifulla, Eksp. Klin. Farmakol., 73(11), 34 – 38 (2010).PubMedGoogle Scholar
  9. 9.
    E. A. Kotova, A. P. Polozkova, T. V. Denisova, et al., Khim.-farm. Zh., 45(12), 37 – 40 (2011); Pharm. Chem. J., 45(12), 746 – 749 (2012).Google Scholar
  10. 10.
    H. D. Han, Y. Byeon, H. N. Jeon, et al., Nanoscale Res. Lett., 9:209 (2014).PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yu. A. Goryacheva, O. M. Vekshina, V. A. Yashin, et al., Byull. Eksp. Biol. Med., 140(12), 688 – 690 (2005).Google Scholar
  12. 12.
    R. Mo, Q. Sun, N. Li, and C. Zhang, Biomaterials, 34(11), 2773 – 2786 (2013).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Xia, Z. An, Y. Wang, et al., Chem. Pharm. Bull., 61(4), 390 – 398 (2013).PubMedCrossRefGoogle Scholar
  14. 14.
    A. P. Kaplun, Le Bang Shom, Yu. M. Krasnopol’skii, et al., Vopr. Med. Khim., No. 1, 3 – 12 (1999).Google Scholar
  15. 15.
    P. Ye, W. Zhang, T. Yang, et al., Int. J. Nanomed., 9, 2167 – 2178 (2014).CrossRefGoogle Scholar
  16. 16.
    L. I. Barsukov, Soros. Obraz. Zh., No. 10 (1998).Google Scholar
  17. 17.
    M. Takenaga, Y. Ohta, Y. Tokura, et al., Drug Delivery, 15(3), 169 – 175 (2008).PubMedCrossRefGoogle Scholar
  18. 18.
    L. M. Kuzyakova, Vestn. Mosk. Univ., Ser. 2: Khim., 46(1), 74 – 79 (2005).Google Scholar
  19. 19.
    D. A. Bezrukov, Author’s Abstract of a Candidate Dissertation in Chemical Sciences, Moscow, 2007.Google Scholar
  20. 20.
    M. Teshima, S. Fumoto, K. Nishida, et al., J. Controlled Release, 112(3), 320 – 328 (2006).CrossRefGoogle Scholar
  21. 21.
    Z. She, T. Zhang, X. Wang, et al., Biomaterials, 35(19), 5216 – 5225 (2014).PubMedCrossRefGoogle Scholar
  22. 22.
    Tran Thi Hai Yen, E. V. Ignat’eva, A. P. Polozkova, et al., Khim.-farm. Zh., 44(6), 53 – 56 (2010); Pharm. Chem. J., 44(6), 337 – 340 (2010).Google Scholar
  23. 23.
    L. A. Davies, G. A. Nunez-Alonso, G. McLachlan, et al., Hum. Gene Ther.: Clin. Dev., 25(2), 97 – 107 (2014).Google Scholar
  24. 24.
    E. V. Tolcheva and N. A. Oborotova, Ross. Bioterapevticheskii Zh., 1(5), 54 – 61 (2006).Google Scholar
  25. 25.
    A. Yu. Baryshnikov and N. A. Oborotova, Sovrem. Onkol., 2(3), 44 – 46 (2001).Google Scholar
  26. 26.
    A. Gursoy, E. Kut, and S. Ozkirimli, Int. J. Pharm., 271(1 – 2), 115 – 123 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    I. M. Bushmakina, N. I. Drozdova, and M. A. Martynova, Khim.-farm. Zh., 45(1), 51 – 53 (2011); Pharm. Chem. J., 45(1), 62 – 65 (2014).Google Scholar
  28. 28.
    M. Zaru, S. Mourtas, P. Klepetsanis, et al., Eur. J. Pharm. Biopharm., 67(3), 655 – 666 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    V. P. Krasnov, M. A. Koroleva, and E. L. Vodovozova, Usp. Google Scholar
  30. 30.
    L. B. Margolis and L. D. Bergel’son, Liposomes and Their Interaction with Cells [in Russian], Nauka, Moscow, 1986, pp. 82 – 144.Google Scholar
  31. 31.
    E. V. Sanarova, E. A. Kotova, S. G. Gozeev, et al., Khim.-farm. Zh., 46(3), 50 – 53 (2012); Pharm. Chem. J., 46(3), 192 – 195 (2012).Google Scholar
  32. 32.
    I. V. Arkhipenko, V. A. Nevzorova, and B. I. Gel’tser, Ter. Arkh., No. 3, 78 – 81 (1998).Google Scholar
  33. 33.
    M. Niu, Y. Lu, L. Hovgaard, and W. Wu, Int. J. Nanomed., No. 6, 1155 – 1166 (2011).Google Scholar
  34. 34.
    O. M. Ipatova, Phosphogliv: Mechanism of Action and Clinical Application [in Russian], GU NII BMKh RAMN, Moscow, 2005, pp. 11 – 83.Google Scholar
  35. 35.
    A. W. Shaw and M. A. McLean, and S. G. Sligar, FEBS Lett., 556(1 – 3), 260 – 264 (2004).PubMedCrossRefGoogle Scholar
  36. 36.
    N. A. Oborotova, A. A. Vilanskaya, and V. I. Prokof’eva, Ross. Bioterapevticheskii Zh., 1(5), 62 – 70 (2006).Google Scholar
  37. 37.
    V. K. Matus, G. L. Gurevich, V. M. Tsarenkov, et al., Vestsi Nats. Akad. Navuk Belarusi, Ser. Biyal. Navuk, No. 1, 131 – 141 (2000).Google Scholar
  38. 38.
    C. Rodrigues, P. Gamiero, M. Prieto, et al., Biochim. Biophys. Acta, 1620(1 – 3), 151 – 159 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    G. Gregoriadis and A. Allison (eds.), Liposomes in Biological Systems [in Russian], Meditsina, Moscow, 1983, pp. 107 – 155.Google Scholar
  40. 40.
    J. Zipper, D. Sarrach, and W. Halle, Biomed. Biochim. Acta, 47(7), 713 – 719 (1988).PubMedGoogle Scholar
  41. 41.
    M. Halter, M. Antia, and V. Vogel, J. Controlled Release, 101(1 – 3), 209 – 222 (2005).CrossRefGoogle Scholar
  42. 42.
    K. X. Ngo, H. Umakoshi, T. Shimanouchi, et al., Colloids Surf., B, 73(2), 399 – 407 (2009).CrossRefGoogle Scholar
  43. 43.
    M. S. Martina, V. Nicolas, C. Wilhelm, et al., Biomaterials, 28(28), 4143 – 4153 (2007).PubMedCrossRefGoogle Scholar
  44. 44.
    B. Pawlikowska-Pawlega, L. E. Misiak, A. Jarosz-Wilkolazka, et al., Biochim. Biophys. Acta, 1838(8), 2127 – 2138 (2014).PubMedCrossRefGoogle Scholar
  45. 45.
    Z. Drulis-Kawa, A. Dorotkiewicz-Jach, J. Gubernator, et al., Int. J. Pharm., 367(1 – 2), 211 – 219 (2009).PubMedCrossRefGoogle Scholar
  46. 46.
    A. A. Vorob’ev, Microbiology and Immunology [in Russian], Meditsina, Moscow, 2005, pp. 167 – 269.Google Scholar
  47. 47.
    D. L. H. Poelma, L. J. I. Zimmermann, H. H. Scholten, et al., Am. J. Physiol.: Lung Cell. Mol. Physiol., 283(3), L648-L654 (2002).Google Scholar
  48. 48.
    R. Pandey, S. Sharma, and G. K. Khuller, Indian J. Exp. Biol., 42(6), 562 – 566 (2004).PubMedGoogle Scholar
  49. 49.
    E. V. Tolcheva and N. A. Oborotova, Ross. Bioterapevticheskii Zh., 1(3), 19 (2005).Google Scholar
  50. 50.
    N. L. Leparskaya, G. M. Sorokoumova, Yu. S. Sycheva, et al., Vestn. MITKhT, 6(2), 37 – 42 (2011).Google Scholar
  51. 51.
    K. Hirota, T. Hasegawa, H. Hinata, et al., J. Controlled Release, 119(1), 69 – 76 (2007).CrossRefGoogle Scholar
  52. 52.
    A. R. Mohammed, V. W. Bramwell, A. G. Coombes, et al., Methods, 40(1), 30 – 38 (2006).PubMedCrossRefGoogle Scholar
  53. 53.
    O. Yu. Arshinova, E. V. Sanarova, A. V. Lantsova, and N. A. Oborotova, Khim.-farm. Zh., 46(4), 29 – 34 (2012); Pharm. Chem. J., 46(4), 228 – 233 (2012).Google Scholar
  54. 54.
    I. M. Bushmakina, N. I. Drozdova, and M. A. Martynova, Biomed. Khim., 55(2), 177 – 184 (2009).PubMedGoogle Scholar
  55. 55.
    A. B. Rubin (ed.), Problems of Regulation in Biological Systems [in Russian], NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow-Izhevsk, 2006, pp. 82 – 103.Google Scholar
  56. 56.
    J. K. Silvius, Biochim. Biophys. Acta, No. 1610, 174 – 183 (2003).Google Scholar
  57. 57.
    A. A. Boldyrev, E. A. Kyaivyaryainen, and V. A. Ilyukha, Biomembranology: Student Aide [in Russian], Kar NTs RAN, Petrozavodsk, 2006, pp. 18 – 56.Google Scholar
  58. 58.
    G. I. Klebanov, Author’s Abstract of a Doctoral Dissertation in Biological Sciences, Moscow, 1991.Google Scholar
  59. 59.
    D. A. Brown and E. London, J. Biol. Chem., No. 275, 17221 – 17224 (1991).Google Scholar
  60. 60.
    V. G. Zaitsev, O. V. Ostrovskii, and V. I. Zakrevskii, Eksp. Klin. Farmakol., 66(4), 66 – 70 (2003).PubMedGoogle Scholar
  61. 61.
    R. P. Evstigneeva, I. M. Volkov, and V. V. Chudinova, Biol. Membr., 15(2), 119 – 136 (1998).Google Scholar
  62. 62.
    B. Li, J. R. Harjani, N. S. Cormier, et al., J. Am. Chem. Soc., 135(4), 1394 – 1405 (2013).PubMedCrossRefGoogle Scholar
  63. 63.
    E. B. Burlakova, S. A. Krashakov, and N. G. Khrapova, Biol. Membr., 15(2), 137 – 167 (1998).Google Scholar
  64. 64.
    J. Atkinson, R. F. Epand, and R. M. Epand, Free Radical Biol. Med., 44(5), 739 – 764 (2008).CrossRefGoogle Scholar
  65. 65.
    M. L. Sagrista, A. F. Garcia, M. Africa De Madariaga, et al., Free Radical Res., 36(3), 329 – 340 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. M. Bushmakina
    • 1
  • M. A. Martynova
    • 1
  • E. V. Knyazeva
    • 1
  1. 1.Institute of Biophysics and Cell Engineering, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations