Advertisement

Pharmaceutical Chemistry Journal

, Volume 48, Issue 11, pp 765–769 | Cite as

Thermodynamic Studies of Metal Complexes of Tetracycline and its Application in Drug Analysis

  • A. Bagheri
Article

The complexation reactions between Fe3+, Cu2+ and Pd2+ ions with tetracycline HCl (TC) in water or DMF were studied by the spectrophotometric methods at [(15, 25, 35 and 45 ± 0.1) °C]. The complexation process was optimized in terms of pH, temperature and time. The stoichiometry of the complexes (metal ion/ligand) were found to be 1:2 [for Pd(II)-TC and Fe(III)-TC] and 1:1 [for Cu(II)-TC]. The formation constants of the resulting complexes were determined from computer fitting absorbance-mole ratio data and emphasized by the KINFIT program. The values of the thermodynamic parameters for complexation reactions were obtained from the temperature dependence of the stability constants. Tetracycline could be determined by measuring the absorbance of each complex at its specific λmax.

Keywords

Tetracycline Metal ions Complexation Thermodynamic KINFIT 

Notes

Acknowledgements

We wish to thank the Islamic Azad University Center Tehran Branch for its invaluable support through the project.

References

  1. 1.
    S. Harbarth, W. Albrich, D. A. Goldmann, J. Huebner, Lancet Infect. Dis. 1, 251 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    L. A. Mitscher, S. P. Pillai, E. J. Gentry, D. M. Shankel, Med. Res. Rev., 19, 477(1999).CrossRefPubMedGoogle Scholar
  3. 3.
    I. Berber, C. Cokmus, E. Atalan, Mikrobiologiia, 72 ,54 (2003).PubMedGoogle Scholar
  4. 4.
    R. L. Lintvedt, B. C. Glick, Inorg. Chem. 15, 1633 (1976).CrossRefGoogle Scholar
  5. 5.
    D. E. Fenton, J. R. Tate, Inorg. Chim. Acta., 23, 83 (1984).Google Scholar
  6. 6.
    W. A. Baker, P. M. Brown, J. Am. Chem. Soc., 88, 1314 (1966).CrossRefPubMedGoogle Scholar
  7. 7.
    S. M. Sultan, F. O. Suliman, S. O. Duffuaa, I. I. Abu-Abdoun, Analyst., 117, 1179 (1966).CrossRefGoogle Scholar
  8. 8.
    H. Poiger, Ch. Schlatter, Analyst., 101, 808 (1976).CrossRefPubMedGoogle Scholar
  9. 9.
    Z. Gong, Z. Zhang, Anal. Chim. Acta., 351, 205 (1997).CrossRefGoogle Scholar
  10. 10.
    A. Regos, G. Zuk, J. D. Lukasiak, Sci. Pharm., 46, 249 (1978).Google Scholar
  11. 11.
    M. A. Ghandour, A. M. M. Ali, Anal. Lett., 24, 2171 (1991).CrossRefGoogle Scholar
  12. 12.
    C. M. Couto, J. L. F. C. Lima, M. Conceição, B. S. M. Montenegro, S. Reis, J. Pharm. Biomed. Anal., 18, 527 (1998).CrossRefPubMedGoogle Scholar
  13. 13.
    T. Charoenraks, S. Chuanuwatanakul, K. Honda, Y. Yamaguchi, O. Chilapakul, Anal. Sci., 21, 241 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    M. S. Mahrous ,M. M. Abdel-Khalek, Talanta, 31, 289 (1984).CrossRefPubMedGoogle Scholar
  15. 15.
    U. Saha, A. K. Sen, T. K. Das, S. K. Bhowal, Talanta, 37, 1193 (1990).CrossRefPubMedGoogle Scholar
  16. 16.
    V. A. Nicely, J. L. Dye, J. Chem. Educ., 48, 443 (1990).Google Scholar
  17. 17.
    G. W. Everett, J. Gulbis, J. Shaw, J. Am. Chem. Soc., 104, 445 (1982).CrossRefGoogle Scholar
  18. 18.
    J. Shaw, G. W. Everett, Inorg. Biochem., 17, 305 (1982).CrossRefGoogle Scholar
  19. 19.
    T. Sawal, A. Yamaguchi, J. Biol. Chem., 265, 4809 (1990).Google Scholar
  20. 20.
    L. Lambs, M. Brion, Inorg. Chim. Acta., 106, 151 (1983).CrossRefGoogle Scholar
  21. 21.
    M. Brion, G. Berton, Inorg. Chim. Acta., 55, 47 (1981).CrossRefGoogle Scholar
  22. 22.
    J. Rokos, M. Burger, Nature 181, 1201 (1958).CrossRefPubMedGoogle Scholar
  23. 23.
    L. Laco, J. Korlnek, Clin. Chim. Acta, 4, 800 (1959).CrossRefGoogle Scholar
  24. 24.
    D. P. Rall, T. L. Loo, J. Natl. Cancer Inst., 19, 79 (1957).PubMedGoogle Scholar
  25. 25.
    W. E. Wenthworth, J. Chem. Educ., 42, 96 (1962).CrossRefGoogle Scholar
  26. 26.
    M. J. D. Powell, Comput. J., 7, 155 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryCenter Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations