Skip to main content
Log in

Pharmacokinetics of Quercetin and Other Flavonols Studied by Liquid Chromatography and LC-MS (a Review)

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Modern analytical methods used to study the pharmacokinetics of quercetin and other flavonols, i.e., biologically active compounds that exhibit various therapeutic properties, were reviewed. The preparation of biological fluids and tissues for analysis, chromatography conditions, and mass spectrometric detection for various flavonols as the aglycons and glycosides and their metabolites were discussed. Quantitative analyses of flavonol concentrations in biological samples and their mass spectrometric identification in in vitro and in vivo studies during tests with pure compounds and multi-constituent plant extracts were presented as typical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. B. Men'shchikova, V. Z. Lankin, N. K. Zenkov, et al., Oxidative Stress. Pro-oxidants and Antioxidants [in Russian], Firma Slovo, Moscow (2006).

    Google Scholar 

  2. V. Yu. Bogachev, O. V. Golovanova, A. N. Kuznetsov, and A. O. Shekoyan, Angiol. Sosud. Khir., 19(1), 1 – 8 (2013).

    Google Scholar 

  3. E. Yu. Bakhtenko and P. B. Kurapov, Variety of Higher Plant Secondary Metabolites [in Russian], Izd. VGPU, Vologda (2008).

    Google Scholar 

  4. D>Chemical Encyclopedia, Vol. 5, BSE, Moscow (1998), p. 104.

  5. http://en.wikipedia.org/wiki/Flavonols

  6. M. Materska, Pol. J. Food Nutr. Sci., 58(4), 407 – 413 (2008).

    CAS  Google Scholar 

  7. J. Cao, Y. Zhang, W. Chen, and X. Zhao, Br. J. Nutr., 103(2), 249 – 255 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. S. Kumar and A. K. Pandey, Sci.World J., 2013, 162750 (2013).

    Google Scholar 

  9. G. Puodzhyunene, V. Kairite, V. Yanulis, et al., Khim.-farm. Zh., 45(2), 26 – 28 (2011); Pharm. Chem. J., 45(2), 88 – 90 (2011).

  10. A. Z. Abyshev, E. M. Agaev, and A. B. Guseinov, Khim.-farm. Zh., 41(8), 23 – 26 (2007); Pharm. Chem. J., 41(8), 419 – 423 (2007).

  11. H. El Hajji, E. Nkhili, V. Tomao, and O. Dangles, Free Radical Res., 40(3), 303 – 320 (2006).

    Article  Google Scholar 

  12. G. S. Kelly, Altern. Med. Rev., 16(2), 172 – 194 (2011).

    PubMed  Google Scholar 

  13. E. H. Liu, L. W. Qi, J. Cao, et al., Molecules, 13(10), 2521 – 2544 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. J. K. Prasain and S. Barnes, Mol. Pharm., 4(6), 846 – 864 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. P. L. Kole, G. Venkatesh, J. Kotecha, and R. Sheshala, Biomed. Chromatogr., 25(1 – 2), 199 – 271 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Kawai, S. Saito, T. Nishikawa, et al., Biosci. Biotechnol. Biochem., 73(3), 517 – 523 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. G. An, J. Gallegos, and M. E. Morris, Drug. Metab. Dispos., 39(3), 426 – 432 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. X. Yao, G. Zhou, Y. Tang, et al., Molecules, 18, 3050 – 3059 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. R. Rajbhandari, N. Peng, R. Moore, et al., J. Agric. Food Chem., 59(12), 6682 – 6688 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. F. Liu, Y. Xu, L. Rui, et al., Rapid Commun. Mass Spectrom., 20(23), 3522 – 3526 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhao, L. Wang, Y. Bao, and C. Li, Rapid Commun. Mass Spectrom., 21(6), 971 – 981 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. J. Li, Z.-W. Wang, X. Zhang, et al., Biomed. Chromatogr., 22(4), 374 – 378 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. N. Li, C. Liu, S. Mi, et al., J. Chromatogr. Sci., 50(10), 885 – 892 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. D. Jin, H. Hakamata, K. Takahashi, et al., Biomed. Chromatogr., 18(9), 662 – 666 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. N. Li, C. Liu, and S. Mi, J. Chromatogr. Sci., 50(10), 885 – 892 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. J. Liu, H. Sun, A. Zhang, et al., Biomed. Chromatogr., 28(4), 500 – 510 (2014).

    Article  CAS  Google Scholar 

  27. J. L. Zhou, Z. M. Qian, and Y. D. Luo, Biomed. Chromatogr., 22(10), 1164 – 1172 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. X. Zhang, Y. G. Sun, M. C. Cheng, et al., Anal. Chim. Acta, 602(2), 252 – 258 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. B. A. Graf, C. Ameho, and G. G. Dolnikowski, J. Nutr., 136(1), 39 – 44 (2006).

    CAS  PubMed  Google Scholar 

  30. J.-S. Kang, in: Tandem Mass Spectrometry – Applications and Principles, J. Prasain (ed.); [Electronic resource] INTECH [Official website] URL http: //www.intechopen.com/books/tandem-mass-spectrometry-applications-and-principles (accessed:12.07.2013).

  31. J. Vacek, B. Papouskova, P. Kosina, et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 899, 109 – 115 (2012).

    Article  CAS  Google Scholar 

  32. S. Gao, W. Jiang, T. Yin, and M. Hu, J. Agric. Food Chem., 58(11), 6650 – 6659 (2010).

    Article  CAS  Google Scholar 

  33. S. E. Saad, D. J. Jones, L. M. Norris, et al., Biomed. Chromatogr., 26(12), 1559 – 1566 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. L. Lu, D. Qian, J. Yang, S. Jiang, et al., Biomed. Chromatogr., 27(4), 509 – 514 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. O. V. Zillich, U. Schweiggert-Weisz, K. Hasenkopf, et al., Biomed. Chromatogr., 27(11), 1444 – 1451 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. M. J. Gray, D. Chang, Y. Zhang, et al., Biomed. Chromatogr., 24(1), 91 – 103 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. J. He, Y. Feng, H. Z. Ouyang, et al., J. Pharm. Biomed. Anal., 84, 189 – 195 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. W. Niu, X. Zhu, K. Yu, et al., J. Mass Spectrom., 47(3), 370 – 380 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. J. Zhang, X. Liu, N. Fu, et al., J. Ethnopharmacol., 133(2), 911 – 913 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. L. Chang, Y. Ren, L. Cao, et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 904, 59 – 64 (2012).

    Article  CAS  Google Scholar 

  41. H. van der Woude, M. G. Boersma, J. Vervoort, and I. M. Rietjens, Chem. Res. Toxicol., 17, No. 11, 1520 – 1530 (2004).

    Article  PubMed  Google Scholar 

  42. E. J. Oliveira, D. G. Watson, and M. H. Grant, Xenobiotica, 32(4), 279 – 287 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. L. Wang and M. E. Morris, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 821(2), 194 – 201 (2005).

    Article  CAS  Google Scholar 

  44. S. Fernandez-Arroyo, M. Herranz-Lopez, and R. Beltran-Debon, Mol. Nutr. Food Res., 56(10), 1590 – 1595 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. R. March and J. Brodbelt, J. Mass Spectrom., 43(12), 1581 – 1617 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. T. Rousu, J. Herttuainen, and A. Tolonen, Rapid Commun. Mass Spectrom., 24(7), 939 – 957 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 48, No. 8, pp. 3 – 16, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglya, E.B. Pharmacokinetics of Quercetin and Other Flavonols Studied by Liquid Chromatography and LC-MS (a Review). Pharm Chem J 48, 489–498 (2014). https://doi.org/10.1007/s11094-014-1137-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-014-1137-0

Keywords

Navigation