Advertisement

Pharmaceutical Chemistry Journal

, Volume 48, Issue 8, pp 489–498 | Cite as

Pharmacokinetics of Quercetin and Other Flavonols Studied by Liquid Chromatography and LC-MS (a Review)

  • E. B. Guglya
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • 318 Downloads

Modern analytical methods used to study the pharmacokinetics of quercetin and other flavonols, i.e., biologically active compounds that exhibit various therapeutic properties, were reviewed. The preparation of biological fluids and tissues for analysis, chromatography conditions, and mass spectrometric detection for various flavonols as the aglycons and glycosides and their metabolites were discussed. Quantitative analyses of flavonol concentrations in biological samples and their mass spectrometric identification in in vitro and in vivo studies during tests with pure compounds and multi-constituent plant extracts were presented as typical examples.

Keywords

quercetin flavonols flavonoids flavonoid pharmacokinetics bioanalytical methods liquid chromatography-mass spectrometry (LC-MS/MS) 

References

  1. 1.
    E. B. Men'shchikova, V. Z. Lankin, N. K. Zenkov, et al., Oxidative Stress. Pro-oxidants and Antioxidants [in Russian], Firma Slovo, Moscow (2006).Google Scholar
  2. 2.
    V. Yu. Bogachev, O. V. Golovanova, A. N. Kuznetsov, and A. O. Shekoyan, Angiol. Sosud. Khir., 19(1), 1 – 8 (2013).Google Scholar
  3. 3.
    E. Yu. Bakhtenko and P. B. Kurapov, Variety of Higher Plant Secondary Metabolites [in Russian], Izd. VGPU, Vologda (2008).Google Scholar
  4. 4.
    D>Chemical Encyclopedia, Vol. 5, BSE, Moscow (1998), p. 104.Google Scholar
  5. 5.
  6. 6.
    M. Materska, Pol. J. Food Nutr. Sci., 58(4), 407 – 413 (2008).Google Scholar
  7. 7.
    J. Cao, Y. Zhang, W. Chen, and X. Zhao, Br. J. Nutr., 103(2), 249 – 255 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Kumar and A. K. Pandey, Sci.World J., 2013, 162750 (2013).Google Scholar
  9. 9.
    G. Puodzhyunene, V. Kairite, V. Yanulis, et al., Khim.-farm. Zh., 45(2), 26 – 28 (2011); Pharm. Chem. J., 45(2), 88 – 90 (2011).Google Scholar
  10. 10.
    A. Z. Abyshev, E. M. Agaev, and A. B. Guseinov, Khim.-farm. Zh., 41(8), 23 – 26 (2007); Pharm. Chem. J., 41(8), 419 – 423 (2007).Google Scholar
  11. 11.
    H. El Hajji, E. Nkhili, V. Tomao, and O. Dangles, Free Radical Res., 40(3), 303 – 320 (2006).CrossRefGoogle Scholar
  12. 12.
    G. S. Kelly, Altern. Med. Rev., 16(2), 172 – 194 (2011).PubMedGoogle Scholar
  13. 13.
    E. H. Liu, L. W. Qi, J. Cao, et al., Molecules, 13(10), 2521 – 2544 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    J. K. Prasain and S. Barnes, Mol. Pharm., 4(6), 846 – 864 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    P. L. Kole, G. Venkatesh, J. Kotecha, and R. Sheshala, Biomed. Chromatogr., 25(1 – 2), 199 – 271 (2011).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Kawai, S. Saito, T. Nishikawa, et al., Biosci. Biotechnol. Biochem., 73(3), 517 – 523 (2009).PubMedCrossRefGoogle Scholar
  17. 17.
    G. An, J. Gallegos, and M. E. Morris, Drug. Metab. Dispos., 39(3), 426 – 432 (2011).PubMedCrossRefGoogle Scholar
  18. 18.
    X. Yao, G. Zhou, Y. Tang, et al., Molecules, 18, 3050 – 3059 (2013).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Rajbhandari, N. Peng, R. Moore, et al., J. Agric. Food Chem., 59(12), 6682 – 6688 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    F. Liu, Y. Xu, L. Rui, et al., Rapid Commun. Mass Spectrom., 20(23), 3522 – 3526 (2006).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Zhao, L. Wang, Y. Bao, and C. Li, Rapid Commun. Mass Spectrom., 21(6), 971 – 981 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Li, Z.-W. Wang, X. Zhang, et al., Biomed. Chromatogr., 22(4), 374 – 378 (2008).PubMedCrossRefGoogle Scholar
  23. 23.
    N. Li, C. Liu, S. Mi, et al., J. Chromatogr. Sci., 50(10), 885 – 892 (2012).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Jin, H. Hakamata, K. Takahashi, et al., Biomed. Chromatogr., 18(9), 662 – 666 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    N. Li, C. Liu, and S. Mi, J. Chromatogr. Sci., 50(10), 885 – 892 (2012).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Liu, H. Sun, A. Zhang, et al., Biomed. Chromatogr., 28(4), 500 – 510 (2014).CrossRefGoogle Scholar
  27. 27.
    J. L. Zhou, Z. M. Qian, and Y. D. Luo, Biomed. Chromatogr., 22(10), 1164 – 1172 (2008).PubMedCrossRefGoogle Scholar
  28. 28.
    X. Zhang, Y. G. Sun, M. C. Cheng, et al., Anal. Chim. Acta, 602(2), 252 – 258 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    B. A. Graf, C. Ameho, and G. G. Dolnikowski, J. Nutr., 136(1), 39 – 44 (2006).PubMedGoogle Scholar
  30. 30.
    J.-S. Kang, in: Tandem Mass Spectrometry – Applications and Principles, J. Prasain (ed.); [Electronic resource] INTECH [Official website] URL http: //www.intechopen.com/books/tandem-mass-spectrometry-applications-and-principles (accessed:12.07.2013).
  31. 31.
    J. Vacek, B. Papouskova, P. Kosina, et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 899, 109 – 115 (2012).CrossRefGoogle Scholar
  32. 32.
    S. Gao, W. Jiang, T. Yin, and M. Hu, J. Agric. Food Chem., 58(11), 6650 – 6659 (2010).CrossRefGoogle Scholar
  33. 33.
    S. E. Saad, D. J. Jones, L. M. Norris, et al., Biomed. Chromatogr., 26(12), 1559 – 1566 (2012).PubMedCrossRefGoogle Scholar
  34. 34.
    L. Lu, D. Qian, J. Yang, S. Jiang, et al., Biomed. Chromatogr., 27(4), 509 – 514 (2013).PubMedCrossRefGoogle Scholar
  35. 35.
    O. V. Zillich, U. Schweiggert-Weisz, K. Hasenkopf, et al., Biomed. Chromatogr., 27(11), 1444 – 1451 (2013).PubMedCrossRefGoogle Scholar
  36. 36.
    M. J. Gray, D. Chang, Y. Zhang, et al., Biomed. Chromatogr., 24(1), 91 – 103 (2010).PubMedCrossRefGoogle Scholar
  37. 37.
    J. He, Y. Feng, H. Z. Ouyang, et al., J. Pharm. Biomed. Anal., 84, 189 – 195 (2013).PubMedCrossRefGoogle Scholar
  38. 38.
    W. Niu, X. Zhu, K. Yu, et al., J. Mass Spectrom., 47(3), 370 – 380 (2012).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Zhang, X. Liu, N. Fu, et al., J. Ethnopharmacol., 133(2), 911 – 913 (2011).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Chang, Y. Ren, L. Cao, et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 904, 59 – 64 (2012).CrossRefGoogle Scholar
  41. 41.
    H. van der Woude, M. G. Boersma, J. Vervoort, and I. M. Rietjens, Chem. Res. Toxicol., 17, No. 11, 1520 – 1530 (2004).PubMedCrossRefGoogle Scholar
  42. 42.
    E. J. Oliveira, D. G. Watson, and M. H. Grant, Xenobiotica, 32(4), 279 – 287 (2002).PubMedCrossRefGoogle Scholar
  43. 43.
    L. Wang and M. E. Morris, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 821(2), 194 – 201 (2005).CrossRefGoogle Scholar
  44. 44.
    S. Fernandez-Arroyo, M. Herranz-Lopez, and R. Beltran-Debon, Mol. Nutr. Food Res., 56(10), 1590 – 1595 (2012).PubMedCrossRefGoogle Scholar
  45. 45.
    R. March and J. Brodbelt, J. Mass Spectrom., 43(12), 1581 – 1617 (2008).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Rousu, J. Herttuainen, and A. Tolonen, Rapid Commun. Mass Spectrom., 24(7), 939 – 957 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. B. Guglya
    • 1
  1. 1.Institute of Basic and Applied Biomedical ResearchPirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations