Advertisement

Pharmaceutical Chemistry Journal

, Volume 48, Issue 6, pp 357–362 | Cite as

Pharmacokinetic Study of the New Diagnostic Radiopharmaceutical 99mTc-Pentaphosphonic Acid in Rats with an Experimental Bone-Fracture Model

  • V. M. Petriev
  • V. K. Tishchenko
  • O. V. Siruk
  • O. A. Smoryzanova
  • V. G. Skvortsov
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION

The pharmacokinetic properties of a bone-seeking radiopharmaceutical based on pentaphosphonic acid labeled with technetium-99m (99mTc-PPA) were investigated. The experiments were performed in healthy rats and in rats with a femoral bone-fracture (BF) model. The radiopharmaceutical was injected into a tail vein 14 days after the fracture. 99mTc-PPAshowed good stability in vivo because it accumulated in the thyroid less than unlabeled 99mTc. The maximum accumulation of 99mTc-PPA was found in bones tissue, where it reached 1.48 ±0.19% of injected dose per gram of tissue at 1 h after injection. The drug exhibited rapid blood clearance, showed minimum uptake into soft organs and tissues, and was excreted mainly via renal pathways. The presence of femoral BF significantly changed the biodistribution of 99mTc-PPAin soft organs and tissues. The 99mTc-PPAcontent in BF was 1.9 – 2.5 times higher than in healthy femur and 2 – 3 times higher than in skeleton. The concentration of 99mTc-PPAin other soft organs and tissues of rats with bone lesion was lower than in organs and tissues of healthy rats. The maximum BF-to-blood and BF-to-muscle ratios were 184.8 ±14.1 and 415.4 ±59.5, respectively, 3 h after injection. The results showed that 99mTc-PPAhad favorable properties for diagnosing bone-tissue metastases.

Keywords

pharmacokinetic study radiopharmaceutical 99mTc-pentaphosphonic acid experimental bonefracture model technetium rats diagnostics bone-tissue metastases 

References

  1. 1.
    G. Arsos, I. Venizelos, N. Karatzas, et al., Eur. J. Radiol., 43(1), 66 – 72 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Chavdarova, E. Piperkova, A. Tsonevska, et al., J. BUON, 11(4), 499 – 504 (2006).PubMedGoogle Scholar
  3. 3.
    S. Banerjee, M. R. Pillai, and N. Ramamoorthy, Semin. Nucl. Med., 31(4), 260 – 277 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Uematsu, S. Yuen, S. Yukisawa, et al., Am. J. Roentgenol., 184(4), 1266 – 1273 (2005).CrossRefGoogle Scholar
  5. 5.
    V. Kumar, D. Kumar, R. B. Howman-Giles, et al., Nucl. Med. Commun., 28(2), 101 – 107 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Asikoglu and F. G. Durak, Appl. Radiat. Isot., 67(9), 1616 – 1621 (2009).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Shigematsu, S. Shiomi, H. Iwao, et al., Ann. Nucl. Med., 16(1), 55 – 59 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    B. J. Fueger, M. Mitterhauser, W. Wadsak, et al., Nucl. Med. Commun., 25(4), 361 – 365 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    I. Holen and R. E. Coleman, Curr. Pharm. Des., 16(11), 1262 – 1271 (2010).PubMedCrossRefGoogle Scholar
  10. 10.
    M. J. Rogers, Curr. Pharm. Des., 9(32), 2643 – 2658 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Subramanian, J. G. McAfee, F. D. Thomas, et al., Radiology, 149(3), 823 – 828 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Schuemichen, T. Krause, G. Umbach, et al., Nuklearmedizin, 27(1), 8 – 11 (1988).PubMedGoogle Scholar
  13. 13.
    B. Stromqvist, J. Brismar, L. I. Hansson, et al., Clin. Orthop. Relat. Res., 182, 177 – 189 (1984).PubMedGoogle Scholar
  14. 14.
    P. McKinstry, J. E. Schnitzer, T. R. Light, et al., Skeletal Radiol., 8(2), 115 – 121 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    O. F. Nicolay, J. D. Heeley, M. K. Jeffcoat, et al., Int. J. Radiat. Appl. Instrum. B., 15(2), 157 – 163 (1988).CrossRefGoogle Scholar
  16. 16.
    E. A. Carr, Jr., M. Carroll, M. Montes, et al., J. Nucl. Med., 26(4), 385 – 389 (1985).PubMedGoogle Scholar
  17. 17.
    I. D. McCarthy and S. P. Hughes, Calcif. Tissue Int., 35(4 – 5), 508 – 511 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    S. A. Riggs, Jr., M. B. Wood, W. P. Cooney 3rd, et al., J. Orthop. Res., 1(3), 236 – 243 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    T. T. Mottonen, P. Hannonen, J. Toivanen, et al., Scand. J. Rheumatol., 16(6), 421 – 427 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Oka, T. T. Mottonen, and A. A. Rekonen, Scand. J. Rheumatol., 12(1), 46 – 48 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Isacson, J. Rydberg, and L. A. Brostrom, Scand. J. Rheumatol., 17(5), 333 – 339 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    W. Y. Lin, C. P. Lin, S. J. Yeh, et al., Eur. J. Nucl. Med., 24(6), 590 – 595 (1997).PubMedGoogle Scholar
  23. 23.
    J. G. McAfee, A. Singh, M. Roskopf, et al., Invest. Radiol., 18(5), 470 – 478 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    J. G. McAfee, F. D. Thomas, M. Roskopf, et al., Invest. Radiol., 19(6), 543 – 548 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. M. Petriev
    • 1
  • V. K. Tishchenko
    • 1
  • O. V. Siruk
    • 1
  • O. A. Smoryzanova
    • 1
  • V. G. Skvortsov
    • 1
  1. 1.Medical Radiological Scientific Center, Ministry of Public Health and Social Development of the Russian FederationObninskRussia

Personalised recommendations