Pharmaceutical Chemistry Journal

, Volume 48, Issue 4, pp 260–268 | Cite as

Sydnone Sulfonamide Derivatives as Antibacterial, Antifungal, Antiproliferative and Anti-HIV Agents

  • Shahrukh T. Asundaria
  • Christophe Pannecouque
  • Erik De Clercq
  • Keshav C. Patel

Three series of substituted sydnone sulfonamide derivatives were synthesized wherein 3-(4-methylphenyl)-4-(chlorosulfonyl)sydnone (5) was linked by a sulfonamide linkage with various thiazole, benzothiazole and quinazoline groups. The structures of the compounds were confirmed by IR and NMR spectroscopy and elemental analysis. The synthesized compounds were evaluated for their antibacterial, antifungal, antiproliferative and anti-HIV activities. Anti-HIV activity was determined against human immunodeficiency virus HIV-1 (III-B) and HIV-2 (ROD) in MT-4 cells. Inhibition of cytomegalovirus and varicella-zoster virus (VZV) replication was measured in human embryonic lung (HEL) cells.


anti-HIV antiprolioferative sydnone sulfonamides 



One of the authors (STA) thanks the University Grants Commission (New Delhi) for providing a Research Fellowship. He is also thankful to Atul Limited, Valsad and Ami Organics, Sachin for providing some useful chemicals.


  1. 1.
    S. M. El-Messery, G. S. Hassan, F. A. M. Al-Omary, and H. I. El-Subbagh, Eur. J. Med. Chem., 54, 615 – 625 (2012).PubMedCrossRefGoogle Scholar
  2. 2.
    F. A. M. Al-Omary, G. S. Hassan, S. M. El-Messery, and H. I. El-Subbagh, Eur. J. Med. Chem., 47, 65 – 72 (2012).PubMedCrossRefGoogle Scholar
  3. 3.
    S. H. L. Kok, R. Gambari, C. H. Chui, et al., Bioorg. Med. Chem., 16, 3626 – 3631 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Alafeefy and A. E. Ashour, J. Enzyme Inhib. Med. Chem., 27, 541 – 545 (2012).Google Scholar
  5. 5.
    B. E. Sleebs, P. E. Czabotar, W. J. Fairbrother, et al, J. Med. Chem., 54, 1914 – 1926 (2011).PubMedCrossRefGoogle Scholar
  6. 6.
    M. J. Fregly, L. B. Kier, and D. Dhavan, Toxicol. Appl. Pharmacol. 6, 529 – 541 (1964).PubMedCrossRefGoogle Scholar
  7. 7.
    C. S. Dunkley and C. J. Thoman, Bioorg. Med. Chem. Lett., 13, 2899 – 2901 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    M. A. Moustafa, M. M. Gineinah, M. N. Nasr, and W. A. H. Bayoumi, Arch. Pharm., 337, 427–433 (2004).CrossRefGoogle Scholar
  9. 9.
    K. Turnbull, T. L. Blackburn, and D. B. McClure, J. Heterocycl. Chem., 31, 1631–1636 (1994).Google Scholar
  10. 10.
    S. T. Asundaria and K. C. Patel, Synth. Commun., 40, 1899–1906 (2010).CrossRefGoogle Scholar
  11. 11.
    N. S. Rai, B. Kalluraya, and B. Lingappa, Eur. J. Med. Chem., 43, 1715–1720 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    D. R. Stalons and C. Thornsberry, Antimicrob. Agents Chemother., 7, 15–21 (1975).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    V. J. Boyle, M. E. Fancher, and R. W. Ross, Antimicrob. Agents Chemother., 3, 418–424 (1973).PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    T. Kira, J.P. Merin, M. Baba, et al., AIDS Res. Hum. Retrovir., 11, 1359–1366 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shahrukh T. Asundaria
    • 1
  • Christophe Pannecouque
    • 2
  • Erik De Clercq
    • 2
  • Keshav C. Patel
    • 1
  1. 1.Department of ChemistryVeer Narmad South Gujarat UniversitySuratIndia
  2. 2.Rega Institute for Medical Research, K. U. LeuvenLeuvenBelgium

Personalised recommendations