Advertisement

Pharmaceutical Chemistry Journal

, Volume 48, Issue 3, pp 143–148 | Cite as

Effects of Cytoflavin and its Components on Behavioral Disorders in Mice with Alloxan Diabetes

  • I. A. Volchegorskii
  • L. M. Rassokhina
  • S. G. Ermakova
MOLECULAR BIOLOGY PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • 79 Downloads

The effects of the combined formulation Cytoflavin and its individual components (meglumine sodium succinate, nicotinamide, riboflavin, and inosine) on depressive behavioral disorders (DBD) were studied in mice with alloxan diabetes. Cytoflavin was found to be effective in correcting deficits in the activity of animals in the open field test and significantly reduced “despair behavior” in a 6-min tail suspension test; it also produced a transient hypoglycemic effect. The DBD-correcting activity of Cytoflavin was shown to be associated mainly with meglumine sodium succinate. The effect was significantly less linked with nicotinamide, which also produced the transient hypoglycemic action of Cytoflavin. Riboflavin made an even smaller contribution to the positive psychotropic action of Cytoflavin. The most problematic component of Cytoflavin was inosine, courses of which significantly increased lethality in mice with alloxan diabetes. However, this effect of inosine was only apparent when used alone, and disappeared completely when used in Cytoflavin.

Keywords

Cytoflavin alloxan diabetes depressive behavioral disorders 

References

  1. 1.
    S. A. Rumyantseva, A. I. Fedin, S. B. Bolevich, et al., Zh. Nevrol. Psikhiat., 110(8), 16 – 21 (2010).Google Scholar
  2. 2.
    E. V. Silina and S. A. Rumyantseva, Vest. Intensiv. Ter., No. 2, 82 – 88 (2006).Google Scholar
  3. 3.
    S. V. Okovityi, D. S. Sukhanov, V. A. Zaplutanov, et al., Klin. Med., No. 9, 63 – 68 (2012).Google Scholar
  4. 4.
    I. A. Volchegorskii, L. M. Rassokhina, and I. Yu. Miroshnichenko, Éksperim. Klin. Farmakol., 5, 17 – 25 (2011).Google Scholar
  5. 5.
    I. A. Volchegorskii, L. M. Rassokhina, and I. Yu. Miroshnichenko, Byull. Éksperim. Biol. Med., No. 1, 63 – 70 (2013).Google Scholar
  6. 6.
    R. A. Kopaladze, Usp. Fiziol. Nauk., 29(4), 74 – 92 (1998).PubMedGoogle Scholar
  7. 7.
    I. A. Volchegorskii, I. I. Dolgushin, O. L. Kolesnikov, and V. E. Tseilikman, Experimental Modeling and Laboratory Evaluation of the Body’s Adaptive Reactions [in Russian], Chelyabinsk State Pedagogical University, Chelyabinsk (2000).Google Scholar
  8. 8.
    L. Steru, Psychopharmacology, 85, 367 – 370 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    I. A. Volchegorskii, L. M. Rassokhina, and I. Yu. Miroshnichenko, Probl. Éndokrinol., No. 4, 20 – 24 (2009).Google Scholar
  10. 10.
    I. A. Volchegorskii, L. M. Rassokhina, and I. Yu. Miroshnichenko, Éksperim. Klin. Farmakol., 72(2), 11 – 15 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. A. Volchegorskii
    • 1
  • L. M. Rassokhina
    • 1
  • S. G. Ermakova
    • 1
  1. 1.Southern Urals State Medical University, Russian Ministry of HealthChelyabinskRussia

Personalised recommendations