Advertisement

Pharmaceutical Chemistry Journal

, Volume 47, Issue 4, pp 181–186 | Cite as

Collective recognition strategy for estimating hepatoprotector activity of various chemical compounds in increasing liver repair potential

  • A. S. Kabankin
  • L. A. Radkevich
Molecular-Biological Problems of Drug Design and Mechanism of Drug Action
  • 92 Downloads

The relationship between molecular characteristics and hepatoprotector activity (increasing liver repair potential) was investigated for a diverse series of chemical compounds. Application of the nearest-neighbor method using geometric descriptors to a training set including 44 compounds (23 active and 21 inactive) gave combinations of the descriptors that classified correctly 79 – 91% of the training-set compounds. It was shown that a classifier that classified correctly all training-set compounds could be constructed by applying a simple voting procedure to results obtained for various combinations of descriptors. The effectiveness of the proposed approach for predicting the activity of untested compounds was proved by cross-validation with groups of compounds removed from the training set.

Keywords

hepatoprotector activity liver repair potential activity prognosis geometric descriptors 

References

  1. 1.
    L. A. Piruzyan, A. S. Kabankin, L. I. Gabrielyan, et al., Khim.-farm. Zh., 38(3), 19–25 (2004).Google Scholar
  2. 2.
    A. S. Kabankin, L. I. Gabrielyan, Khim.-farm. Zh., 39(3), 23–27 (2005).Google Scholar
  3. 3.
    A. S. Kabankin, L. I. Radkevich, L. I. Gabrielyan, et al., Khim.-farm. Zh., 39(4), 24–28 (2005).Google Scholar
  4. 4.
    A. S. Kabankin, L. I. Gabrielyan, Khim.-farm. Zh., 40(6), 17–21 (2006).Google Scholar
  5. 5.
    A. S. Kabankin, L. I. Gabrielyan, Khim.-farm. Zh., 42(5), 30–32 (2008).Google Scholar
  6. 6.
    L. A. Radkevich, Author’s Abstract of a Doctoral Dissertation in Biological Sciences, Moscow (1998).Google Scholar
  7. 7.
    R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiely-VCH, Weinheim, Germany (2000).Google Scholar
  8. 8.
    Milano Chemometrics & QSAR Research Group, DRAGON Web version 2.1 from http://michem.disat.unimib.it/chm/
  9. 9.
    P. Willett, J. M. Barnard, G. M. Downs, J. Chem. Inf. Comput. Sci., 38(6), 983–996 (1998).CrossRefGoogle Scholar
  10. 10.
    D. K. Agrafiotis, W. Cedeno, V. S. Lobanov, J. Chem. Inf. Comput. Sci., 42(4), 903–911 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    V. Svetnik, A. Liaw, C. Tong, et al., J. Chem. Inf. Comput. Sci., 43(6), 1947–1958 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Merkwirth, H. Mauser, T. Schulz-Gasch, et al., J. Chem. Inf. Model., 44(6), 1971–1978 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Guha, P. C. Jurs, J. Chem. Inf. Model., 44(6), 2179–2189 (2004).CrossRefGoogle Scholar
  14. 14.
    H. Hong, W. Tong, Q. Hie, et al., SAR QSAR Environ. Res., 16(4), 339–347 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    V. Svetnik, T.Wang, C. Tong, et al., J. Chem. Inf. Model., 45(3), 786–799 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Arodz, D. A. Yuen, A. Z. Dudek, J. Chem. Inf. Model., 46(1), 416–423 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    Q. Zhang, J. M. Hughes-Oliver, R. T. Ng, J. Chem. Inf. Model., 49(8), 1857–1865 (2009).PubMedCrossRefGoogle Scholar
  18. 18.
    P. M. Vasil’ev, Author’s Abstract of a Doctoral Dissertation in Biological Sciences, Volgograd (2009).Google Scholar
  19. 19.
    M. Culp, K. Johnson, G. Michalidis, J. Chem. Inf. Model., 50(2), 309–316 (2010).PubMedCrossRefGoogle Scholar
  20. 20.
    I. J. Izenman, Modern Multivariate Statistical Techniques: Regression, Classification, and Manyfold Learning, Springer Science + Business Media, New York (2008), pp. 505–550.Google Scholar
  21. 21.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Science + Business Media, New York (2009).Google Scholar
  22. 22.
    A. B. Merkov, Sample Recognition: Introduction to Statistical Learning Methods [in Russian], Editorial URSS, Moscow (2011), pp. 183–205.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. S. Kabankin
    • 1
  • L. A. Radkevich
    • 1
  1. 1.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia

Personalised recommendations