Advertisement

Pharmaceutical Chemistry Journal

, Volume 45, Issue 11, pp 651–654 | Cite as

Effects of nitrosyl complexes of iron with functional S-ligands on the activity of hydrolytic enzymes

  • L. V. Tat’yanenko
  • O. V. Dobrokhotova
  • I. Yu. Pikhteleva
  • D. A. Poletaeva
  • A. I. Kotel’nikov
  • T. N. Rudneva
  • N. A. Sanina
  • S. M. Aldoshin
Molecular-Biological Problems of Drug Design and Mechanisms of Drug Action
  • 43 Downloads

We report here our studies of new nitrosyl complexes of iron of the cationic type - [Fe2(SR′)2(NO)4]2+ with R′ = cysteamine and penicillamine - and of the neutral type - [Fe2(SR″)2(NO)4]0 with R″ = benzthiazoline – on the enzymatic activity of hydrolases – cyclic guanosine monophosphate phosphodiesterase (PDEcGMP) and sarcoplasmic reticulum Ca2+-Mg2+-dependent ATPase (SR-Ca2+-ATPase). All the complexes studied were found to be modulators of both enzymes. They produced weak inhibition of PDEcGMP activity and marked inhibition of active transport by SR Ca2+-ATPase. While having virtually no effect on the hydrolytic center of SR Ca2+-ATPase, the active transport of calcium was completely blocked over the concentration range 1 μM – 0.1 mM, with uncoupling of the hydrolytic and transport functions of this enzyme. This suggests that these complexes can induce structural-functional changes in SR Ca2+-ATPase at concentrations corresponding to an enzyme:inhibitor ratio of 1:1, which is consistent with the antimetastatic action of these compounds.

Key words

cGMP phosphodiesterase sarcoplasmic reticulum Ca2+-ATPase inhibition sulfur-nitrosyl iron complexes 

References

  1. 1.
    R. Butler and I. L. Megson, Chem. Rev., 102, 1155 – 1166 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    A. S. Dutton, J. M. Fukuto, and K. N. Houk, Inorg. Chem., 43, 1039 – 1045 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    A. S. Dutton, C. P. Suhrada, K. M. Miranda, et al., Inorg. Chem., 45, 2448 – 2456 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    N. A. Sanina, N. I. Syrtsova, N. I. Shkondina, et al., Nitric oxide: Biol. Chem., 16, 181 – 188 (2006).CrossRefGoogle Scholar
  5. 5.
    O. S. Zhukova, N. A. Sanina, L. V. Fetisova, et al., Ros. Bioter. Zh., 5, 14 – 20 (2006).Google Scholar
  6. 6.
    A. A. Timoshin, A. F. Vanin, Ts. R. Orlova, et al., Nitric Oxide: Biol. Chem., 16, 286 – 293 (2007).CrossRefGoogle Scholar
  7. 7.
    L. M. Borisova, I. Yu. Kubasova, M. P. Kiseleva, et al., Ros. Bioter. Zh., 6, 42 – 49 (2007).Google Scholar
  8. 8.
    N. A. Sanina, L. A. Syrtsova, N. I. Shkondina, et al., Izv. Akad. Nauk. Ser. Khim., 4, 732 – 736 (2007).Google Scholar
  9. 9.
    N. A. Sanina, K. A. Lysenko, O. S. Zhukova, et al., Patent application No. 2009140388 (2009).Google Scholar
  10. 10.
    T. N. Rudneva, N. A. Sanina, K. A. Lysenko, et al., Mend. Comm., 19, 253 – 255 (2009).CrossRefGoogle Scholar
  11. 11.
    S. M. Aldoshin, N. A. Sanina, O. A. Rakova, et al., Izv. Akad. Nauk. Ser. Khim., 8, 1614 – 1620 (2003).Google Scholar
  12. 12.
    N. A. Sanina, T. N. Roudneva, K. A. Lisenko, O. S. Zhukova, N. S. Emel′yanova, and S. M. Aldoshin,WO2009 / 148346 A1.Google Scholar
  13. 13.
    F. Ring, Modern Drug Discovery, Nov. / Dec. 31 (1998).Google Scholar
  14. 14.
    V. G. Granik and N. B. Grigor′ev, Izv. Akad. Nauk. Ser. Khim., 8, 1268 – 1323 (2002).Google Scholar
  15. 15.
    V. G. Granik and N. B. Grigor′ev, in: Nitric Oxide: New Pathways of Drug Discovery [in Ukrainian], Vuzovksaya Kniga (2004), p. 360.Google Scholar
  16. 16.
    D. Basil, A. Roufogalis, Shi Chen, et al., Ann. N. Y. Acad. Sci., 834, 673 (1977).Google Scholar
  17. 17.
    V. B. Ritov, in: Science and Technology. Biological Chemistry [in Russian], Moscow (1977), Vol. 11, p. 80.Google Scholar
  18. 18.
    F. Fidler, Cancer Res., 50, 6130 – 6138 (1990).PubMedGoogle Scholar
  19. 19.
    K. Honn, F. Onoda, C. Diglio, et al., Proc. Soc. Exp. Biol. Med., 174, 16 – 17 (1983).PubMedGoogle Scholar
  20. 20.
    J. A. Schmank and A. M. Levfer, Res. Commun. Chem. Pathol. Pharmacol., 35, 178 – 187 (1982).Google Scholar
  21. 21.
    V. P. Nifontov, L. V. Tat’yanenko, V. A. Chernov, et al., Khim.-Farm. Zh., 5, 522 – 526 (1988).Google Scholar
  22. 22.
    R. E. Liberzon, T. T. Shchekoldina, and O. S. Vatolkina, Vopr. Med. Khim., 4, 526 – 530 (1977).Google Scholar
  23. 23.
    D. Bailey, Methods in Protein Chemistry [Russian translation], Mir, Moscow (1980), p. 53.Google Scholar
  24. 24.
    V. B. Ritov, V. M. Mel’gunov, and P. G. Komarov, Dokl. Akad. Nauk SSSR, 233, 720 – 733 (1977).Google Scholar
  25. 25.
    L. V. Tat’yanenko, A. I. Kotel’nikov, O. V. Dobrokhotova, et al., Khim.-Farm. Zh., 43, 55 – 59 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. V. Tat’yanenko
    • 1
  • O. V. Dobrokhotova
    • 1
  • I. Yu. Pikhteleva
    • 1
  • D. A. Poletaeva
    • 1
  • A. I. Kotel’nikov
    • 1
  • T. N. Rudneva
    • 1
  • N. A. Sanina
    • 1
  • S. M. Aldoshin
    • 1
  1. 1.Institute of Problems in Chemical Physics, Russian Academy of SciencesMoscow Region, ChernogolovkaRussia

Personalised recommendations