Advertisement

Synthesis and antimicrobial activity of quaternary N-aryl-5,6-benzoquinaldinium derivatives

  • N. E. Shchepina
  • I. I. Boiko
  • G. A. Aleksandrova
Article

A series of quaternary N-aryl-5,6-benzoquinaldinium derivatives have been synthesized. Their antimicrobial activity (E. coli, S. aureus) has been tested. It was found that introduction of a new annelated benzene ring into the heterocyclic molecule (compared with quinolinium and benzoquinolinium compounds) leads to a significant increase of the antibacterial activity. Electron-withdrawing substituents in the quaternary phenyl group decrease slightly the antimicrobial effect. Since better results have been obtained for N-phenyl-5,6-benzoquinaldinium tetrafluoroborate, biological investigations were continued on the additional test cultures S. saprophyticus, Salmonella spp., Micrococcus luteus, Proteus vulgaris, Bacillus subtilis, and Candida albicans. The observation of high fungicidal activity against C. albicans was promising.

Key words

benzoquinaldinium derivatives antimicrobial activity fungicidal activity fungi genus Candida albicans 

Notes

Acknowledgments

The work was supported financially by the RFBR, Grant No. 10-03-00685-a.

References

  1. 1.
    E. S. Cherkasskii, L. R. Kolomeitsev, A. K. Sheikman, and I. T. Korneeva, Dokl. Akad. Nauk SSSR, 161(5), 1208 – 1211 (1965).PubMedGoogle Scholar
  2. 2.
    T. N. Bennett, M. Paguio, B. Gligorijevic, et al., Antimicrob. Agents Chemother., 48(5), 1807 – 1810 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Zhao and G. Sun, J. Surfactants Deterg., 9, 325 – 330 (2006).CrossRefGoogle Scholar
  4. 4.
    K. M. Docherty and C. F. Kulpa, Jr., Green Chem., No. 7, 185 – 189 (2005).Google Scholar
  5. 5.
    B. M. Gutsulyak, Usp. Khim., 41(2), 346 – 373 (1972).Google Scholar
  6. 6.
    I. I. Sidorchuk, R. F. Stadniichuk, E. N. Tishchenko, and L. T. Bordyakovskaya, Khim.-farm. Zh., 12(7), 78 – 80 (1978).Google Scholar
  7. 7.
    W. S. Chen, G. H. Cocolas, C. J. Cavallito, and K. J. Chai, J. Med. Chem., 20(12), 1617 – 1623 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    W. S. Chen, G. H. Cocolas, and C. J. Cavallito, J. Pharm. Sci., 68(8), 1025 – 1027 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    J. W. Bunting, K. R. Laderoute, and D. J. Norris, Can. J. Biochem., 49 – 57 (1980).Google Scholar
  10. 10.
    P. V. Prisyazhnyuk, G. K. Palii, Yu. L. Volyanskii, et al., Khim.-farm. Zh., 10(5), 46 – 49 (1976).Google Scholar
  11. 11.
    T. Zhao and G. Sun, J. Appl. Microbiol., 1 – 7 (2007).Google Scholar
  12. 12.
    G. T. Pilyugin and E. P. Opanasenko, Ukr. Khim. Zh., 18(6), 625 – 630 (1952).Google Scholar
  13. 13.
    G. T. Pilyugin and E. P. Opanasenko, Zh. Obshch. Khim., 27, 1015 – 1018 (1957).Google Scholar
  14. 14.
    E. Knoevenagel, J. Prakt. Chem., 89(1), 1 – 50 (1913).CrossRefGoogle Scholar
  15. 15.
    G. N. Pershin (ed.), Methods of Experimental Chemotherapy [in Russian], Medgiz, Moscow (1971), p. 109.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • N. E. Shchepina
    • 1
  • I. I. Boiko
    • 2
  • G. A. Aleksandrova
    • 1
  1. 1.Natural Sciences Institute, Perm State UniversityPermRussia
  2. 2.OOO TekhnologYaroslavl Region, Pereslavl-ZalesskiyRussia

Personalised recommendations