Advertisement

Pharmaceutical Chemistry Journal

, Volume 44, Issue 2, pp 51–55 | Cite as

Molecular-biological problems of drug design and mechanism of drug action

Pharmacokinetics, pharmacodynamics, and analysis of morphine and tramadol
  • K. S. Zaikin
  • G. V. Ramenskaya
  • A. P. Arzamastsev
Article

The non-medicinal use of narcotic analgesics such as morphine and tramadol, as well as the opiate substance heroin, whose main metabolites are 6-monoacetylmorphine and morphine, is currently widespread among drug addicts. Overdosage with and death resulting from these substances are common. They are also encountered in combination with other psychotropic agents [1, 2, 3, 4].

Drug addicts use these agents because of their effects. Morphine and tramadol produce analgesia and euphoria, the latter producing pleasant feelings and unmotivated states of freedom from anxiety and worries. Users feel comfortable and lose the sensations of hunger and thirst. These effects lead to therapeutic dependence, i.e., the uncontrollable desire to take repeated doses. This leads to the development of physical dependence, which is apparent as a withdrawal syndrome. At the same time, the pharmacological effects of these agents are widely utilized in a variety of surgical procedures [5, 6].

Data from the...

Keywords

Morphine tramadol gas chromatography-mass spectroscopy blood pharmacokinetics pharmacodynamics 

References

  1. 1.
    N. V. Veselovskaya and B. N. Izotov, Analysis of Opiates in Urine [in Russian], I. M. Sechenov Moscow Medical Academy, Moscow (2002), pp. 85–110.Google Scholar
  2. 2.
    N. V. Veselovskaya and A. E. Kovalenko, Narcotics: Properties, Actions, Pharmacokinetics, Metabolism: Guidelines [in Russian], Triada, Moscow (2000), pp. 112–205.Google Scholar
  3. 3.
    S. K. Eremin, B. N. Izotov, and N. V. Veselovskaya, Analysis of Narcotics [in Russian], Mysl’, Moscow (1993), pp. 144–265.Google Scholar
  4. 4.
    S. Kerrigan, D. Honey Donna, and G. Baker, J. Anal. Toxicol., No. 28, 529–532 (2004).PubMedGoogle Scholar
  5. 5.
    M. E. Isakova, Z. V. Pavlova, and V. V. Bryuzgin, Sovr. Onkol. Klin. Onkol., No. 7, 12–19 (2005).Google Scholar
  6. 6.
    Detection of Morphine, Codeine, and Diacetylmorphine (Heroin)in Forensic Chemical Investigations of Cadaver Blood [in Russian], E. M. Salomatin, N. A. Gorbacheva, B. M. Zolotarev, T. V. Lobacheva, and A. M. Orlova (Eds.), Moscow (2005), pp. 3–24.Google Scholar
  7. 7.
    E. A. Simonov, L. F. Naidenova, and S. A. Vornakov, Narcotic Substances and Psychotropic Agents Subject to Control in the Territories of the Russian Federation [in Russian], Interlab, Moscow (2003), pp. 313–412.Google Scholar
  8. 8.
    A. C. Moffat, Clarke’s Isolation and Identification of Drugs, Pharmaceutical Press, London (1986), 2nd Ed., pp. 544–766.Google Scholar
  9. 9.
    H.-M. Lee and C.-W. Lee, J. Anal. Toxicol., No. 15, 182–187 (1991).PubMedGoogle Scholar
  10. 10.
    R. C. Baselt and R. H. Cravey, Disposition of Toxic Drugs and Chemicals in Man, California (1995), 4th Ed., pp. 648–734.Google Scholar
  11. 11.
    G. Skopp, B. Ganssmann, and J. Edward, J. Anal. Toxicol., No. 21, 105–111 (1997).PubMedGoogle Scholar
  12. 12.
    G. Skopp, L. Pötsch, A. Klingmann, and R. Mattern, J. Anal. Toxicol.,No. 25,2–7 (2001).PubMedGoogle Scholar
  13. 13.
    G. Skopp, L. Pötsch, B. Ganssmann, et al., J. Anal. Toxicol., No. 22, 261–264 (1998).PubMedGoogle Scholar
  14. 14.
    M. J. Burt, J. Kloss, and F. Apple, J. Foren. Sci., No. 46, 1138–1142 (2001).Google Scholar
  15. 15.
    N. D. Bynum, L. J. Poklis, M. Gaffney-Kraft, and D. Garside, J. Anal. Toxicol., No. 29, 401–405 (2005).PubMedGoogle Scholar
  16. 16.
    J. Wyman and S. Bultman, J. Anal. Toxicol., No. 28, 260 – 263 (2004).PubMedGoogle Scholar
  17. 17.
    J. D. Ropero-Miller, M. K. Lambing, and R. E. Winecker, J. Anal. Toxicol., No. 26, 524 – 528 (2002).PubMedGoogle Scholar
  18. 18.
    E. J. Cone, Y. H. Caplan, F. Moser, et al., J. Anal. Toxicol., No. 32, 319 – 323 (2008).PubMedGoogle Scholar
  19. 19.
    I. Papoutsis and S. Athanaselis, J. Anal. Toxicol., No. 32, 392 (2008).Google Scholar
  20. 20.
    A. J. Jenkins, R. M. Keenan, J. E. Henningfield, and E. J. Cone, J. Anal. Toxicol., No. 18, 30 – 32 (1994).Google Scholar
  21. 21.
    A. Koski, Interpretation of Postmortem Toxicology Results, Helsinki (2005), pp. 341 – 347.Google Scholar
  22. 22.
    N. D. Bynum, J. L. Poklis, M. Gaffney-Kraft, et al., J. Anal. Toxicol., No. 29, 401 – 406 (2005).PubMedGoogle Scholar
  23. 23.
    O. Suzuki and K. Watanabe, Drugs and Poisons in Humans, Springer Verlag, Berlin, Heidelberg (2005), pp. 668 – 672.Google Scholar
  24. 24.
    R. W. Romberg and L. Lee, J. Anal. Toxicol., No. 19, 62 – 62 (1995).Google Scholar
  25. 25.
    J. Gerostamoulos and O. H. Drummer, J. Foren. Sci., No. 77, 53 – 63 (1995).CrossRefGoogle Scholar
  26. 26.
    F. Karasek and R. Clement, Basic Gas Chromatography-Mass Spectrometry [Russian translation]. Mir, Moscow (1993), pp. 187 – 236.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • K. S. Zaikin
    • 1
  • G. V. Ramenskaya
    • 1
  • A. P. Arzamastsev
    • 1
  1. 1.I. M. Sechenov Moscow Medical AcademyMoscowRussia

Personalised recommendations