Advertisement

Synthesis, antibacterial and antifungal activity of 1, 3-di(2-substituted 10H-phenothiazin-10-yl)propan-1-one

  • T. N. Bansode
  • P. M. Dongre
  • V. G. Dongre
Article

Aseries of 1,3-di(2-substituted 10H-phenothiazin-10-yl)propan-1-one (IVa – p) was synthesized by using the phenothiazine framework through a three-carbon atom chain by condensation of the different chlorides of 3-(10H-phenothiazin-10-y1)propionic acid (IIIa – d) with 2- substituted phenothiazines (Ia – d), and the structures of these compounds were confirmed by IR, 1H NMR, mass, and elemental analysis. The newly synthesized compounds were evaluated for antimicrobial activity.

Keywords

Fluconazole Candida Albicans Propionic Acid Acrylonitrile Phenothiazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. K. El-Said, Pharmazie, 36, 678 – 679 (1981).Google Scholar
  2. 2.
    S. R. Tilak, R. Tyagi, B. Goel, and K. K. Saxena, Indian Drugs, 35, 221 – 227(1998). Google Scholar
  3. 3.
    J. N. Dominguez, S. Lopez, J. Charris, et al., J. Med. Chem., 40, 2726 – 2733 (1997)CrossRefPubMedGoogle Scholar
  4. 4.
    G. Lin, K. K. Midha, and E. M. Hawes, J. Heterocycl. Chem., 28, 215 – 219 (1991).Google Scholar
  5. 5.
    J. Raval and K. K. Desai, ARKIVOC, (XIII), 21 – 28 (2005).Google Scholar
  6. 6.
    M. Viveros and L. Amaral, Int. J. Antimicrob. Ag., 17, 225 – 228 (2001).CrossRefGoogle Scholar
  7. 7.
    L. Amaral and Kristiansen, Int. J. Antimicrob. Ag., 14, 173 – 180 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Trivedi, A. Siddiqui, and V. Shah, ARKIVOC, (XII), 210 – 217 (2008).Google Scholar
  9. 9.
    N. Motohashi, M. Kawasa, S. Saito, and H. Sakagami, Curr. Drug Targets, 1, 237 – 240 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    N. Motohashi, T. Kurihara, K. Satoh, et al., J. Anticancer Res., 19, 1837 – 1842 (1999).Google Scholar
  11. 11.
    T. Kurihara, N. Motohasho, G. L. Pang, et al., J. Anticancer Res., 16, 2757 – 2765 (1996).Google Scholar
  12. 12.
    D. Ledincer and L. A. Mitscher, The Organic Chemistry of Drug Synthesis, Wiley, New York (1976), Vol. 1, p. 372 – 392.Google Scholar
  13. 13.
    A. A. Borbely and M. Loepfe-Hinkkanen, Mod. Phamacol. Toxicol., 16, 403 – 426 (1979).Google Scholar
  14. 14.
    W. R. Reid, J. R. Wright, H. G. Kollofe, et al., J. Am. Chem. Soc., 70, 3100 – 3102 (1948).CrossRefPubMedGoogle Scholar
  15. 15.
    I. Meiermed, Monatsh. Chem., 8, 397 – 399 (1954).Google Scholar
  16. 16.
    J. L. Vennerstrom, A. L. Ager, S. L. Andersen, et al., J. Med. Chem., 41, 4360 – 4367 (1998).CrossRefPubMedGoogle Scholar
  17. 17.
    B. C. May, A. T. Fafarman, S. B. Hong, et al., Proc. Natl. Acad. Sci. U. S. A., 100, 3416 – 3421 (2003).CrossRefPubMedGoogle Scholar
  18. 18.
    X. L. Smith, J. Org. Chem., 15, 1129 – 1130 (1950).Google Scholar
  19. 19.
    R. Cruickshank, J. P. Duguid, B. P. Marion, et al., Medicinal Microbiology. 12th ed., Churchill Livingstone, London (1975), Vol. II, p. 196 – 202.Google Scholar
  20. 20.
    A. H. Collins (ed.), Microbiological Methods, 2nd ed., Butterworth, London (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MumbaiMumbaiIndia
  2. 2.Department of BiophysicsUniversity of MumbaiMumbaiIndia

Personalised recommendations