Pharmaceutical Chemistry Journal

, Volume 43, Issue 1, pp 45–47 | Cite as

Steroid compounds from Yucca gloriosa L. introduced into Georgia and their applications

  • É. P. Kemertelidze
  • M. M. Benidze
  • A. V. Skhirtladze
Medicinal Plants

A plantation of Yucca gloriosa L. (mound-lily yucca) was created in eastern Georgia as a source of the sapogenin tigogenin and for raw material for the synthesis of steroidal hormone preparations of the 5α series. Leaves drying on the lower tier of the living plant contained only spirostanol glycosides. The dominant components of yuccaloesides A, B, and C were extracted from these, along with the new compound 3-O-α-L-rhamnopyranoside(1→4)-O-β-D-xylopyranosyl(1→3)-O-[β-D-glucopyranosyl(1→2)]-O-β-D-gluc opyranosyl(1→4)-O-β-D-galactopyranosyl 25R,5α-spirostan-3β-ol. Total glycosides from leaves drying on living plants were used to prepare a potential antimycotic substance for external application, Gloriofucin.

Key words

Steroid compounds from Yucca gloriosa L. preparation application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. P. Kemertelidze and T. A. Pkheidze, Khim.-Farm. Zh., 6, No. 12, 44–47 (1972).Google Scholar
  2. 2.
    N. I. Men’shova, N. N. Suvorov, É. P. Kemertelidze, et al., Khim.-Farm. Zh., 8, No. 7, 15–17 (1974).Google Scholar
  3. 3.
    E. Kemertelidze, G. Pkheidze, G. Grinenko, and N. Men’shova, Planta Med., 36, No. 3, 265–266 (1979).Google Scholar
  4. 4.
    L. K. Kavtaradze, R. I. Dabrundashvili, N. I. Men’shova, et al., Soobshch. AN GSSR, 132, No. 3, 537–539 (1988).Google Scholar
  5. 5.
    N. Sh. Nadaraya, M. D. Mashkovskii, É. P. Kemertelidze, et al., Khim.-Farm. Zh., 22, No. 3, 288–291 (1988).Google Scholar
  6. 6.
    M. I. Merlani, É. P. Kemertelidze, K. Papadopulos, and N. I. Men’shova, Bioorgan. Khim., 30, No. 5, 552–557 (2004).Google Scholar
  7. 7.
    M. I. Merlani, L. Sh. Amiranashvili, N. I. Men’shova, and É. P. Kemertelidze, Khim. Prirod. Soedin., 1, 81–82 (2007).Google Scholar
  8. 8.
    A. M. Dzhorbenadze and A. Ya. A. Ya. Shtromberg, Rastit. Res., 1, 97–103 (1972).Google Scholar
  9. 9.
    É. P. Kemertelidze, T. A. Pkheidze, L. N. Gvazava, et al., Khim. Prirod. Soedin., 2, 244–246 (1991).Google Scholar
  10. 10.
    M. M. Benidze, O. D. Dzhikiya, T. A. Pkheidze, et al., Khim. Prirod. Soedin., 4, 537–542 (1987).Google Scholar
  11. 11.
    M. M. Benidze, T. A. Pkheidze, and É. P. Kemertelidze, Khim. Prirod. Soedin., 2, 295–296 (1991).Google Scholar
  12. 12.
    É. Kemertelidze and M. Benidze, Bull. Georg. Acad. Sci., 164, No. 1, 91–93 (2001).Google Scholar
  13. 13.
    M. A. Laciaille-Dubois and H. Wagner, Phytomedicine, 2, 363–386 (1996).Google Scholar
  14. 14.
    Masazami Miyakoshi, Yukiyshi Tamura, Hitoshi Masuda, et al., J. Nat. Prod., 63, 332–338 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Favel, M. D. Steinmetz, P. Regli, et al., Planta Med., 60, 50–53 (1994).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Favel, É. Kemertelidze, M. Benidze, et al., Phytother. Res., 19, 158–161 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • É. P. Kemertelidze
    • 1
  • M. M. Benidze
    • 1
  • A. V. Skhirtladze
    • 1
  1. 1.I. G. Kutateladze Institute of PharmacochemistryTbilisiGeorgia

Personalised recommendations