Pharmaceutical Chemistry Journal

, Volume 42, Issue 4, pp 228–231 | Cite as

Preparative flow thin-layer chromatography of biomembrane higher fatty acid diglycerides

  • V. D. Tsydendambaev
  • V. P. Pchelkin
  • A. G. Vereshchagin


Preparative separation of positional isomers of diglycerides (DG) in silica gel layers was performed using a horizontal flow chamber. The time at which dynamic equilibrium between the solid, liquid, and gas phases was established in this chamber was identified using organic stains. In order for this equilibrium to be established, the chloroform flow had to be passed through the adsorbent layer for about 4 h. Layers stabilized by this method were used to fractionate mixtures of rac-1,3-and rac-1,2-DG (17.65 mg) obtained by transesterification of triglycerides from plant oils and loaded onto the carrier layer at the start concentrating zone of the plate using a sample applicator. The yield of this mixture after extraction from sorbent was 16.88 ± 0.77 mg (95.6 ± 4.4%) and the ratio of rac-1,3-to rac-1,2-DG was 0.76 ± 0.02.


Fatty Acid Methyl Ester Adsorbent Layer Column Liquid Chromatography Preparative Separation Boric Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Berezkin and A. S. Bochkov, Quantitative Thin-Layer Chromatography [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    V. V. Pomazanov, A. M. Alymov, and K. I. Sakodynskii, Development of Methods for Analytical Chromatography [in Russian], Science-Research Chemicopharmaceutical Institute, Moscow (1979), pp. 87–90.Google Scholar
  3. 3.
    A. M. Vorontsov, A. S. Kanev, O. A. Rys’ev, and V. N. Chechevichkin, Zh. Fiz. Khim., 54, No. 9, 2385–2388 (1980).Google Scholar
  4. 4.
    T. Wawrzynowicz and E. Soczewinski, J. Chromatogr., 169, 191–203 (1979).CrossRefGoogle Scholar
  5. 5.
    A. V. Zhukov, É. I. Kuznetsova, and A. G. Vereshchagin, Zh. Anal. Khim., 44, No. 8, 1439–1440 (1989).Google Scholar
  6. 6.
    V. G. Berezkin and A. S. Bochkov, A.s. No. 752165 (1980).Google Scholar
  7. 7.
    A. S. Bochkov, A. S. Lezin, G. G. Pavlushkov, et al., Izmereniya, Kontrol’, Avtomatizatsiya, 5, No. 39, 36–42 (1981).Google Scholar
  8. 8.
    L. V. Andreev, and K. A. Koshcheenko, Zh. Anal. Khim., 31, No. 2, 343–348 (1976).Google Scholar
  9. 9.
    E. Soczewinski and K. Czapinska, J. Chromatogr., 168, 230–233 (1979).CrossRefGoogle Scholar
  10. 10.
    E. Tyihak, E. Mincsovics, and H. Kalasz, J. Chromatogr., 174, 75–81 (1979).CrossRefGoogle Scholar
  11. 11.
    A. V. Kargapolov, Biokhimiya, 46, No. 4, 691–698 (1981).Google Scholar
  12. 12.
    T. H. Dzido and E. Soczewinski, J. Chromatogr., 516, 461–466 (1990).CrossRefGoogle Scholar
  13. 13.
    B. Buncak, Fresenius Z. Anal. Chem., 318, 289–292 (1984).CrossRefGoogle Scholar
  14. 14.
    V. P. Pchelkin and A. G. Vereshchagin, Priklad. Biokhim. Mikrobiol., 15, No. 5, 764–768 (1979).Google Scholar
  15. 15.
    V. B. Pchelkin and A. G. Vereshchagin, Priklad. Biokhim. Mikrobiol., 24, No. 6, 809–815 (1988).Google Scholar
  16. 16.
    A. V. Zhukov and V. P. Pchelkin, J. Chromatogr., 132, 543–547 (1977).CrossRefGoogle Scholar
  17. 17.
    V. P. Pchelkin, Zh. Anal. Khim., 48, No. 9, 1442–1449 (1993).Google Scholar
  18. 18.
    V. D. Tsydendambaev, A. V. Zhukov, and A. G. Vereshchagin, Fiziol. Rastenii, 24, No. 2, 437–443 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. D. Tsydendambaev
    • 1
  • V. P. Pchelkin
    • 1
  • A. G. Vereshchagin
    • 1
  1. 1.K. A. Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations