Advertisement

Pharmaceutical Chemistry Journal

, Volume 40, Issue 12, pp 650–654 | Cite as

Topochemical models for predicting the activity of α,γ-diketo acids as inhibitors of the hepatitis c virus NS5B RNA-dependent RNA polymerase

  • S. Bajaj
  • S. S. Sambi
  • A. K. Madan
Article
  • 34 Downloads

Abstract

A relationship between the topochemical indices of α,γ-diketo acids and their inhibitory activity with respect to the hepatitis C virus NS5b RNA-dependent RNA polymerase has been studied. The values of Wiener’s topochemical index W c (a distance based descriptor), the Zagreb topochemical index M 2 c (an adjacency based descriptor), and the topochemical eccentric connectivity index ξ c c (an adjacency-cum-distance based descriptor) were calculated for a set of 30 compounds using an in-house computer program. The resulting data array was analyzed and the models of activity were developed after determination of the active ranges of parameters. Subsequently, a biological activity was assigned using these models to each compound included in the data bank, and the assignment was compared with data reported on the inhibitory activity. A high accuracy of prediction was observed for the proposed models. These models possess vast potential in providing basis structures for the development of diketo acids capable of effectively inhibiting the hepatitis C virus NS5b RNA-dependent RNA polymerase.

Keywords

Zagreb Index Molecular Connectivity Index Topochemical Index Eccentric Connectivity Index Inactive Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Fargion, A. L. Fracanzani, and L. Valenti, J. Antimicrob. Chemother., 53(5), 708–712 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    Z. J. Ni and A. S. Wagman, Curr. Opin. Drug Discov. Devel., 7(4):446–459 (2004).PubMedGoogle Scholar
  3. 3.
    R. T. Sarisky, J. Antimicrob. Chemother., 54(1), 14–16 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Kuainyi, in: Burger’s Medicinal Chemistry and Drug Discovery, M. E. Wolf (ed.), Wiley, New York (1995), Vol. 1, pp. 497.Google Scholar
  5. 5.
    N. Trinajstić: in: Chemical Graph Theory, CRC, Boca Raton, FL (1992).Google Scholar
  6. 6.
    A. Saha, K. Roy, K. De, and C. Sengupta, J. Ind. Chem. Soc., 78, 92–97 (2001).Google Scholar
  7. 7.
    S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, Crat. Chem. Acta, 76(2), 113–124 (2003).Google Scholar
  8. 8.
    E. Estrada and E. Uriarte, Curr. Med. Chem., 8(13), 1573–1588 (2001).PubMedGoogle Scholar
  9. 9.
    R. Gozalbes, J. Doucet, and F. Derouin, Curr. Drug Targets Infect. Disord., 2(1), 93–102 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Estrada, G. Patlewicz, E. Uriate, Ind. J. Chem., 42A, 1315–1329 (2003).Google Scholar
  11. 11.
    H. Wiener, J. Am. Chem. Soc., 69, 17–20 (1947).CrossRefGoogle Scholar
  12. 12.
    H. Wiener, J. Am. Chem. Soc., 69, 2636–2638 (1947).CrossRefGoogle Scholar
  13. 13.
    H. Hosoya, Bull. Chem. Soc. Jpn., 44, 2332–2337 (1971).CrossRefGoogle Scholar
  14. 14.
    M. Randić, J. Am. Chem. Soc., 97, 6609–6615 (1975).CrossRefGoogle Scholar
  15. 15.
    L. B. Kier, L. H. Hall, W. J. Murray, and M. Randic, J. Pharm. Sci., 64, 1971–1974 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    A. T. Balaban, J. Chem. Inf. Comput. Sci., 25, 334–343 (1985).CrossRefGoogle Scholar
  17. 17.
    I. Gutman and N. Trinajstic, Chem. Phys. Lett., 17, 535–545 (1973).CrossRefGoogle Scholar
  18. 18.
    V. Sharma, R. Goswami, and A. K. Madan, J. Chem. Inf. Comput. Sci., 37, 273–281 (1997).CrossRefGoogle Scholar
  19. 19.
    S. Gupta, M. Singh, and A. K. Madan, J. Computer-Aided Mol. Design., 15, 671–678 (2001).CrossRefGoogle Scholar
  20. 20.
    S. Gupta, M. Singh, and A. K. Madan, J. Mol. Struct. (Theochem), 571, 147–152 (2001).CrossRefGoogle Scholar
  21. 21.
    S. Gupta, M. Singh, and A. K. Madan, Ind. J. Chem., 42A, 1414–1425 (2003).Google Scholar
  22. 22.
    S. Bajaj, S. S. Sambi, and A. K. Madan, J. Mol. Struct. (Theochem), 684, 197–203 (2004).CrossRefGoogle Scholar
  23. 23.
    S. Bajaj, S. S. Sambi, and A. K. Madan, MATCH: Commun. Math. Comput. Chem., 55, 193–204 (2006).Google Scholar
  24. 24.
    S. Bajaj, S. S. Sambi, and A. K. Madan, QSAR & Comb. Sci., 23(7), 506–514 (2004).CrossRefGoogle Scholar
  25. 25.
    S. Bajaj, S. S. Sambi, and A. K. Madan, Bioorg. Med. Chem Lett., 15(2), 467–469 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Bajaj, S. S. Sambi, and A. K. Madan, Crat. Chem. Acta., 78(2), 165–174 (2005).Google Scholar
  27. 27.
    V. Kumar, S. Sardana, and A. K. Madan, J. Mol. Model, 10, 397–407 (2004).CrossRefGoogle Scholar
  28. 28.
    V. Summa, A. Petrocchi, P. Pace, et al., J. Med. Chem., 47, 14–17 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Bajaj, S. S. Sambi, and A. K. Madan, Bioorg. Med. Chem., 12, 3695–3701 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    S. C. Basak, A. T. Balaban, G. D. Grunwald, and B. D. Gute, J. Chem. Inf. Comput. Sci., 40, 891–898 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. Bajaj
    • 1
  • S. S. Sambi
    • 1
  • A. K. Madan
    • 2
  1. 1.School of Chemical TechnologyGGS Indraprastha UniversityDelhiIndia
  2. 2.Faculty of Pharmaceutical SciencesMD UniversityRohtakIndia

Personalised recommendations