Advertisement

Pharmaceutical Chemistry Journal

, Volume 40, Issue 11, pp 583–587 | Cite as

Compounds for neutron capture therapy and their distribution in tumors and surrounding tissues of animals (A review)

  • S. N. Koryakin
Molecular-Biological Problems of Drug Design and Mechanism of Drug Action

Abstract

Boron-containing compounds for neutron capture therapy (NCT) can be divided into three groups: compounds without specific accumulation in tumor, tumor-selective compounds, and compounds capable of incorporating into the structure of tumor cells. For the NCT of cancer patients, sodium mercaptododecaborate (BSH) and p-boronophenylalanine (BPA) were selected from several hundred of boron-containing compounds. In this paper, data on the distribution of BSH and BPAin the organism of animals with model tumors modeling those encountered in oncological patients are reviewed. Methods for increasing the boron uptake in tumor, based on the combined use of boron compounds and modification factors such as hyperthermia, effect of electric pulses on the tumor zone, administration of compounds possessing vasodilating properties and influencing the blood-brain barrier permeability, are considered.

Keywords

Melanoma Boron Boron Atom Boron Neutron Capture Therapy Neutron Capture Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Spryshkova, A. S. Yagudov, E. Yu. Grigor’eva, et al., Vopr. Onkol., 41(2), 106–107 (1995).PubMedGoogle Scholar
  2. 2.
    M. F. Hawthome, Molec. Med. Today, April, 174–181 (1998).Google Scholar
  3. 3.
    J. L. Shih and R. M. Brugger, Med. Phys., 19(3), 733–744 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Tokuyne, N. Tokita, Y. Akine, et al., Strahlenther Onkol., 176(2), 81–83 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Hartman and J. Carlson, Radiother. Oncol., 31, 61–75 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    A. H. Soloway, W. Tjarks, B. A. Barnum, et al., Chem. Rev., 98, 1515–1562 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    R. G. Fairchild, S. B. Kahl, B. H. Laster, et al., Cancer Res., 50, 4860–4865 (1990).PubMedGoogle Scholar
  8. 8.
    R. F. Barth and A. H. Soloway, J. Neuro-Oncol., 33(1–2), 3–7 (1997).CrossRefGoogle Scholar
  9. 9.
    T. A. Buchholz, G. E. Laramore, K. J. Stelzer, et al., J. Neuro-Oncol., 33(1–2), 171–178 (1997).CrossRefGoogle Scholar
  10. 10.
    G. E. Laramore, R. Risler, T. W. Griffin, et al., Bull. Cancer / Radiother., 83(Suppl. 1), 191s–197s (1996).Google Scholar
  11. 11.
    E. Heber, E. L. Kreimann, D. Nigg, et al., in: Research and Development in Neutron Capture Therapy, W. Sauerwein, R. Moss, and A. Witting (eds.), Monduzzi, Essen (2002), pp. 745–749.Google Scholar
  12. 12.
    V. A. Trivillin, E. M. Heber, M. E. Itoiz, et al., Appl. Radiat. Isot., 61(5), 939–945 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Gabel, Radiother. Oncol., 30, 199–205 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    J. A. Coderre, J. D. Glass, R. G. Fairchild, et al., Cancer Res., 50, 138–141 (1990).PubMedGoogle Scholar
  15. 15.
    J. A. Coderre, J. D. Glass, R. G. Fairchild, et al., Cancer Res., 47, 6377–6383 (1987).PubMedGoogle Scholar
  16. 16.
    Y. Mishima, M. Ichihashi, M. Tsuji, et al., J. Invest. Dermatol., 92(5) (Suppl.), 321s–325s (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    W. H. Sweet, J. Neuro-Oncol., 33(1–2), 19–26 (1997).CrossRefGoogle Scholar
  18. 18.
    R. F. Barth, A. H. Soloway, and R. M. Brugger, Cancer Invest., 14(6), 534–550 (1996).PubMedGoogle Scholar
  19. 19.
    S. Chandra, D. Lorey, and D. Smith, Radiat. Res., 157, 700–710 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Otersen, D. Haritz, F. Grochulla, et al., J. Neuro-Oncol., 33(1–2), 131–139 (1997).CrossRefGoogle Scholar
  21. 21.
    J. Capala, K. Skold, B. H. Stenstam, et al., in: Research and Development in Neutron Capture Therapy, W. Sauerwein, R. Moss, and A. Witting (eds.), Monduzzi, Essen (2002), pp. 1101–1106.Google Scholar
  22. 22.
    D. E. Callahan, T. M. Forte, S. M. Afzal, et al., Int. J. Radiat. Oncol. Biol. Phys., 45(3), 761–771 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    C. P. Ceberg, A. Brun, S. B. Kahl, et al., J. Neurosurg., 83, 86–92 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Yanagie, H. Kobayashi, Y. Takeda, et al., Biomed. Pharmacother., 56(2), 93–99 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    M. F. Hawthorne and K. Shelly, J. Neuro-Oncol., 33(1–2), 53–58 (1997).CrossRefGoogle Scholar
  26. 26.
    X. Q. Pan, H. Wang, S. Shukla, et al., Bioconjug. Chem., 13, 435–442 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    L. F. Tietze, U. Griesbach, U. Bothe, et al., Chem. Bio. Chem., 3, 219–225 (2002).PubMedGoogle Scholar
  28. 28.
    L. Liu, R. F. Barth, D. M. Adams, et al., Anticancer Res., 16(5a), 2581–2587 (1996).PubMedGoogle Scholar
  29. 29.
    H. Yanagia, Y. Fujii, M. Sekiguchi, et al., J. Cancer Res. Clin. Oncol., 120(11), 636–640 (1994).CrossRefGoogle Scholar
  30. 30.
    S. Novick, M. Quastel, S. Marcus, et al., Nucl. Med. Biol., 29(2), 159–167 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    W. Yang, R. F. Barth, D. M. Adams, et al., Cancer Res., 57, 4333–4339 (1997).PubMedGoogle Scholar
  32. 32.
    K. Schwechheimer, S. Huang, and W. K. Cavenee, Int. J. Cancer, 62, 145–148 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    R. F. Barth, W. Yang, D. Adams, et al., Cancer Res., 62(11), 3159–3166 (2002).PubMedGoogle Scholar
  34. 34.
    K. Ono, S.-I. Masunaga, M. Suzuki, et al., Int. J. Radiat. Oncol. Biol. Phys., 43(2), 431–436 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    R. F. Barth, W. Yang, J. H. Rotaru, et al., Int. J. Radiat. Oncol. Biol. Phys., 47(1), 209–218 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    V. Gregoire, A. C. Begg, R. Huiskamp, et al., Radiother. Oncol., 27(1), 46–54 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    J.-P. Pignol, H. Oudart, P. Chauvel, et al., Br. J. Radiol., 71, 320–323 (1998).PubMedGoogle Scholar
  38. 38.
    J. A. Coderre, D. D. Joel, P. L. Micca, et al., Radiat. Res., 129, 290–296 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Cemazar, J. Skrk, B. Mitrovic, et al., Br. J. Radiol., 73, 195–200 (2000).PubMedGoogle Scholar
  40. 40.
    W. S. Kiger, C. F. Chuang, M. R. Palmer, et al., in: Research and Development in Neutron Capture Therapy, W. Sauerwein, R. Moss, and A. Witting (eds.), Monduzzi, Essen (2002), pp. 765–768.Google Scholar
  41. 41.
    R. F. Barth, W. Yang, R. T. Bartus, et al., Int. J. Radiat. Oncol. Biol. Phys., 52(3), 858–868 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    W. Yang, R. F. Barth, R. T. Bartus, et al., Neurosurgery, 47(1), 189–198 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    R. F. Barth, W. Yang, J. H. Rotaru, et al., Cancer Res., 57(6), 1129–1136 (1997).PubMedGoogle Scholar
  44. 44.
    S. Masunaga, K. Ono, M. Suzuki, et al., Br. J. Radiol., 70, 391–398 (1997).PubMedGoogle Scholar
  45. 45.
    M. R. Horsman, P. J. Wood, D. J. Chaplin, et al., Radiother. Oncol., 18, 49–57 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Ono, Y. Kinashi, M. Suzuki, et al., Jpn. J. Cancer Res., 91(8), 853–858 (2000).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. N. Koryakin
    • 1
  1. 1.Medical Radiology Research CenterRussian Academy of Medical SciencesObninsk, Kaluga oblastRussia

Personalised recommendations