Pharmaceutical Chemistry Journal

, Volume 40, Issue 9, pp 507–512 | Cite as

Obtaining thyroid hormones by chemical methods based on biosynthesis modeling (a review)

  • V. P. Martinovich
  • O. V. Sviridov
Drug Synthesis Methods and Manufacturing Technology


This review considers the methods of synthesis of thyroxine and triiodothyronine, which were developed on the basis of hypothetical models of their biosynthesis in the organism. Most of such methods are based on the use of highly active derivatives of phenols or quinones (4-hydroxy-3,5-diiodophenylpyruvic acid, iodine-containing derivatives of spiro-4-epoxycyclohexadienone, 2,4,6-tri-tert-butylphenol, etc.) as arylating agents. Condensation of these compounds with 3,5-derivatives of tyrosine results in the formation of substituted diaryl esters, representing thyroid hormones or their analogs. Some of the proposed methods are highly effective and lead to high yields of thyroid hormones, which can be used as parent drug substances.


Thyroid Hormone Thyroid Gland Quinole Oxidative Condensation Phenolate Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. B. Utiger and R. V. Utiger, The Thyroid: A Fundamental and Clinical Text, Lippincott, Philadelphia (1991).Google Scholar
  2. 2.
    M. D. Mashkovskii, Drugs [in Russian], Torsing, Kharkov (1998), Vol. 2, p. 11.Google Scholar
  3. 3.
    J. H. Oppennheimer, J. W. Apriletti, and H. H. Samuels, Molecular Basis of Thyroid hormone action, Academic, New York (1983).Google Scholar
  4. 4.
    S. F. Engelken and R. P. Eaton, Atherosclerosis, 38, 177–188 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Hansson, S. Valdemarsson, and P. Nilsson-Ehhle, Horm. Metab. Res., 115, 449–452 (1983).Google Scholar
  6. 6.
    B. Blank, F. R. Pfeiffer., C. M. Greenberg, and J. F. Kerwin, J. Med. Chem., 6, 554–560 (1963).PubMedCrossRefGoogle Scholar
  7. 7.
    A. H. Unterwood, G. C. Emmlett., D. Ellis, et al., Nature, 324, 425–429 (1986).CrossRefGoogle Scholar
  8. 8.
    N. Yokoyama, G. N. Walker, A. J. Main, et al., J. Med. Chem., 38, 695–707 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    P. D. Leeson, J. C. Emmlett, V. D. Shah, et al., J. Med. Chem., 32, 320–336 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    D. M. B. Hickley, P. D. Leeson, R. Novelli, et al., J. Chem. Soc. Perkin Trans., 3103–3111 (1988).Google Scholar
  11. 11.
    P. D. Leeson, G. M. Benson, J. C. Emmlett, et al., J. Med. Chem., 31, 37–54 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    H. A. I. Yoshihara, G. Chiellini, T. J. Mitchison, and T. S. Scanlan, Bioorg. Med. Chem., 6, 1179–1183 (1998).PubMedCrossRefGoogle Scholar
  13. 13.
    J. D. Baxter, W. H. Dillmann, B. L. West, et al., J. Steroid. Chem. Mol. Biol., 76, 31–39 (2001).CrossRefGoogle Scholar
  14. 14.
    M. A. Lasar, Endokrine Rev., 14, 184–197 (1993).CrossRefGoogle Scholar
  15. 15.
    G. Chiellini, N.-H. Nguyen, J. W. Apriletti, et al., Bioorg. Med. Chem., 10, 333–346 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    A. H. Taylor, Z. F. Stefan, R. E. Steele, et al., Mol. Pharmacol., 52, 542–548 (1997).PubMedGoogle Scholar
  17. 17.
    R. E. Steele, J. M. Wasvary, B. N. Dardik, et al., Atherosclerosis, 109, 89–90 (1994).CrossRefGoogle Scholar
  18. 18.
    C. R. Harington and G. Barger, Biochem. J., 21, 169–181 (1927).PubMedGoogle Scholar
  19. 19.
    J. Gross and R. Pitt-Rivers, Biochem. J., 53, 645–650 (1953).PubMedGoogle Scholar
  20. 20.
    J. Roshe, R. Michel, and W. Wolf, C. R. Acad. Sci (Paris), 240, 251–253 (1955).Google Scholar
  21. 21.
    P. M. Kochergin, R. M. Palei, A. N. Kravchenko, and E. V. Popova, Khim.-Farm. Zh., 24(1), 43–49 (1990).Google Scholar
  22. 22.
    M. V. Ugryumov, Mechanisms of Neuroendocrine Regulation [in Russian], Nauka, Moscow (1999), pp. 167–170.Google Scholar
  23. 23.
    J. E. Morley, Endocrinol. Rev., 2, 312–320 (1981).CrossRefGoogle Scholar
  24. 24.
    M. Nakamura, I. Yamazaki, and S. Ohtaki, Thyroperoxidase and Thyroid Autoimmunity, P. Carayon, J. Ruf (eds.), Colloque INSERM / John Libbey eurotext, 207, Paris (1990), pp. 77–83.Google Scholar
  25. 25.
    B. Corvilain, C. Gerard, E. Raspe, et al., Thyroperoxidase and Thyroid Autoimmunity, P. Carayon, J. Ruf (eds.), Colloque INSERM / John Libbey eurotext, 207, Paris (1990), pp. 33–41.Google Scholar
  26. 26.
    S. G. Venkatech and V. Despande, Endocrinology, 122, 5–17 (1999).Google Scholar
  27. 27.
    J. Nunez and J. Pommier, Vitam. Horm., 39, 175–183 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Mutcebeher, J. Physiol. Chem., 261, 253–257 (1939).Google Scholar
  29. 29.
    R. Pitt-Rivers, Biochem J., 43, 223–231 (1948).PubMedGoogle Scholar
  30. 30.
    G. Hillman, B. Keil B, and P. Tashimi, Z. Naturforsh., 16, 28–32 (1961).Google Scholar
  31. 31.
    R. I. Meltzer and R. J. Stanaback, J. Org. Chem., 26, 1977–1979 (1961).CrossRefGoogle Scholar
  32. 32.
    K. Sorimashi and H. J. Cahnmann, Endocrinology, 101, 1276–1280 (1977).CrossRefGoogle Scholar
  33. 33.
    V. P. Martinovich, N. A. Fil’chenkov, and O. V. Sviridov, Vest. Nat. Akad. Nav. Bel., Ser. Khim. Nav., No. 1, 56–63 (2003).Google Scholar
  34. 34.
    A. Nishigawa, H. Kon, J. H. Cahnmann, and T. Matsuura, J. Org. Chem., 33, 157–162 (1968).CrossRefGoogle Scholar
  35. 35.
    A. Nishigawa, J. N. Cahnmann, H. Kon, and T. Matsuura, Biochemistry, 7, 388–397 (1968).CrossRefGoogle Scholar
  36. 36.
    F. Blasi, F. Fragomele, and I. Corelli, Endocrinology, 85, 542–551 (1969).Google Scholar
  37. 37.
    V. B. Oza, G. M. Salamonchyk, Z. Guo, and J. C. Shi, J. Am. Chem. Soc., 119, 11315–11316 (1997).CrossRefGoogle Scholar
  38. 38.
    H. Ogawara and J. H. Cahnmann, Biochim. Biophys. Acta, 257, 328–338 (1972).PubMedGoogle Scholar
  39. 39.
    T. Shiba and J. H. Cahnmann, J. Org. Chem., 29, 1652–1658 (1964).Google Scholar
  40. 40.
    J. H. Cahnmann and K. Funakoshi, Biochemistry, 9, 90–98 (1970).PubMedCrossRefGoogle Scholar
  41. 41.
    G. M. Salamonchyk, V. B. Oza, and C. J. Sih, Tetrahedron Lett., 38, 6965–6968 (1997).CrossRefGoogle Scholar
  42. 42.
    E. Alder, K. Holmberg, and L.-O. Ryrfors, Acta Chem. Scand., B 28, 883–887 (1974).Google Scholar
  43. 43.
    V. P. Martinovich, Ya. M. Katok, N. A. Fil’chenkov, and O. V. Sviridov, Vest. Nat. Akad. Nav. Bel., Ser. Khim. Nav., No. 1, 85–92 (2004).Google Scholar
  44. 44.
    A. Taurog, M. Dorris, and D. R. Doerge, Arch. Biochem. Biophys., 315, 82–89 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    J. H. Cahnmann, J. Pommier, and Nunez, Proc. Natl. Acad. Sci USA, 74, 5333–5335 (1977).PubMedCrossRefGoogle Scholar
  46. 46.
    Y. Ma and C. J. Sih, Tetrahedron Lett., 40, 9211–9214 (1999).CrossRefGoogle Scholar
  47. 47.
    R. Pitt-Rivers and A. T. James, Biochem. J., 70, 173–176 (1958).PubMedGoogle Scholar
  48. 48.
    N. V. Bell, W. R. Bowman, P. F. Coe, et al., Can. J. Chem., 75, 873–883 (1997).CrossRefGoogle Scholar
  49. 49.
    T. Matsuura and A. Nishigawa, J. Org. Chem., 27, 3072–3075 (1962).Google Scholar
  50. 50.
    A. Hutinec, A. Ziogas, and A. Rieker, Amino Acids, 11, 345–366 (1996).CrossRefGoogle Scholar
  51. 51.
    D. M. B. Hickley, P. M. Leeson, S. D. Carter, et al., J. Chem. Soc. Perkin Trains., 3097–3102 (1988).Google Scholar
  52. 52.
    L. J. Degroot and H. Niepomniszcze, Metabolism, 26, 665–718 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. P. Martinovich
    • 1
  • O. V. Sviridov
    • 1
  1. 1.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations