Advertisement

Pharmaceutical Chemistry Journal

, Volume 40, Issue 7, pp 398–404 | Cite as

Structure and spectral characteristics of fervenulin and 2-methylfervenulin-3-one 4-N-oxides: Features of the transformations of fervenulin-3-one and its 4-N-oxide with C-nucleophiles

  • Yu. A. Azev
  • D. Gabel’
  • E. Lork
  • P. Brakman
  • P. A. Gorchakov
Structure of Chemical Compounds, Methods of Analysis and Process Control
  • 45 Downloads

Abstract

The structures of crystalline fervenulin, 2-methylfervenulin-3-one (MSD-92), and their 4-N-oxides were studied using x-ray diffraction and 1H and 13C NMR spectroscopy techniques. Acomparative analysis of the spectroscopic data and the chemical reactivity of pyrimidotriazine antibiotics and their analogs allowed the reactive centers of these biologically active compounds, ways of their activation, and mechanisms of transformation to be elucidated.

Keywords

Trione DMFA Nonhydrogen Atom Glyoxylic Acid Triazine Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Yoneda and T. Nagakatsu, Heterocycles, 4, 749–752 (1976).CrossRefGoogle Scholar
  2. 2.
    F. Yoneda, M. Noguchi, and M. Noda, Chem. Pharm. Bull., 26, 3154–3160 (1978).Google Scholar
  3. 3.
    Yu. A. Azev, I. I. Mudretsova, L. N. Kurkovskaya, et al., Khim.-Farm. Zh., 22(5), 560–564 (1988).Google Scholar
  4. 4.
    Yu. A. Azev, I. I. Mudretsova, E. L. Pidemskii, et al., Khim.-Farm. Zh., 19(10), 1202–1205 (1985).Google Scholar
  5. 5.
    Yu. A. Azev, I. I. Mudretsova, A. F. Goleneva, and G. A. Aleksandrova, Khim.-Farm. Zh., 21(12), 1446–1450 (1987).Google Scholar
  6. 6.
    G. Blankenhorn and W. Pfleiderer, Chem Ber., 105, 3334–3345 (1972).PubMedGoogle Scholar
  7. 7.
    Yu. A. Azev, N. N. Vereshchagina, E. L. Pidémskii, et al., Khim.-Farm. Zh., 18(5), 573–576 (1984).Google Scholar
  8. 8.
    M. Ichiba, S. Nishigaki, and K. Senga, J. Org. Chem., 43, 469–472 (1978).CrossRefGoogle Scholar
  9. 9.
    Yu. A. Azev, 31(1), 47–48 (1997).Google Scholar
  10. 10.
    G. G. Aleksandrov and S. E. Esipov, Antibiot. Med. Biotekhnol., No. 2, 181 (1986).Google Scholar
  11. 11.
    L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions. Chemical Society Special publ., No. 18, Chemical Society, London (1965).Google Scholar
  12. 12.
    Yu. A. Azev, I. I. Mudretsova, E. O. Sidorov, et al., Khim.-Farm. Zh., 21(7), 829–833 (1987).Google Scholar
  13. 13.
    Yu. A. Azev and G. G. Aleksandrov, Khim.-Farm. Zh., 34(9), 39–41 (2000).Google Scholar
  14. 14.
    Yu. A. Azev, I. I. Mudretsova, E. L. Pidémskii, et al., Khim.-Farm. Zh., 20(10), 1228–1231 (1986).Google Scholar
  15. 15.
    G. M. Sheldrick, SHELXS97. Program for the Solution of Crystal Structures, University of Göttingen, Germany (1997).Google Scholar
  16. 16.
    G. M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structures, University of Göttingen, Germany (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. A. Azev
    • 1
  • D. Gabel’
    • 2
  • E. Lork
    • 2
  • P. Brakman
    • 2
  • P. A. Gorchakov
    • 1
  1. 1.Ural Institute of Medicinal Preparation TechnologyYekaterinburgRussia
  2. 2.Bremen UniversityBremenGermany

Personalised recommendations