Pharmaceutical Chemistry Journal

, Volume 40, Issue 3, pp 135–140 | Cite as

Synthesis and anticholinesterase activity of 2-(dimethylamino)ethyl and choline esters of n-substituted α, β-dehydroamino acids

  • A. A. Grigoryan
  • A. A. Ambartsumyan
  • M. V. Mkrtchyan
  • V. O. Topuzyan
  • G. P. Alebyan
  • R. S. Asatryan


A new method for the synthesis of tertiary and quaternary aminoesters of N-substituted α,β-dehydroamino acids is described. Aseries of 16 dehydroamino acids esterified to choline or to its tertiary analog have been synthesized by the proposed method with a yield of 84–93%, and their interactions with human erythrocyte acetylcholinesterase (ACE) and human plasma butyrylcholinesterase (BCE) has been studied. The half-inhibiting concentrations IC50 of the synthesized compounds (determined with respect to cholinesterase hydrolysis of a model substrate, 0.1 mM ATC) vary within a broad range (0.16–1840 µM). The values of traditional parameters of the wave functions of ligands estimated using the Hartree-Fock method do not explain the observed pattern of the anticholinesterase activity. The specific properties of the molecules, especially in their quaternary ammonium salt forms, are probably related to their structural features, in particular, to the ability of the inhibitors to form cyclic conformations (so-called crown structures). Such structures are probably stabilized as a result of the formation of intramolecuar hydrogen bonds between protons of the choline residue and oxygen of the terminal peptide group.


Ethyl Ester Dimethylamino Oxazolones Anticholinesterase Activity Iodomethylates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. O. Topuzyan, G. P. Alebyan, O. L. Mndzhoyan, Khim.-Farm. Zh., 18(7), 798–802 (1984).Google Scholar
  2. 2.
    V. O. Topuzyan, A. S. Nesunts, R. G. Paronikyan, et al., Khim.-Farm. Zh., 31(1), 21–24 (1997).Google Scholar
  3. 3.
    G. P. Alebyan and V. O. Topuzyan, Abstracts of Papers, Armenian Chemistry at eh XXI Century Threshold, Erevean (2000), p. 112.Google Scholar
  4. 4.
    V. O. Topuzyan, J. A. Gerasimyan, A. S. Édilyan, et al., Khim.-Farm. Zh., 20(6), 675–679 (1986).Google Scholar
  5. 5.
    V. O. Topuzyan and G. Yu. Khachvankyan, Arm. Khim. Zh., 49(1–3), 138–141 (1996).Google Scholar
  6. 6.
    G. Fairbanks, T. L. Steck, and D. F. Wallach, Biochemistry, 10(13), 2606–2617 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    B. N. La Du, C. F. Bartels, C. P. Nogueria, et al., Clin. Biochem., 23, 423–431 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    G. L. Ellman, K. D. Coutney, V. Jr. Andres and R. M. Feather-Stone, Biochem. Pharmacol., 7, 88–95 (1961).PubMedCrossRefGoogle Scholar
  9. 9.
    P. W. Riddles, R. L. Blakeley, and B. Zerner, Anal. Biochem., 94(1), 75–81 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Xie, C. V. Altamirano, O. Lockridge, et al., Mol. Pharmacol., 55, 83–91 (1999).PubMedGoogle Scholar
  11. 11.
    A. Cornish-Bowden, Principles of Enzyme Kinetics, Butterworth & Co., London (1976).Google Scholar
  12. 12.
    Q. S. Yu, H. W. Holloway, J. L. Flippen-Anderson, et al., J. Med. Chem., 44, 4062–4072 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Wellenzohn, K. R. Liedle, and B. M. Rode, J. Med. Chem., 46, 5087–5090 (2003).PubMedGoogle Scholar
  14. 14.
    Z. Radic, R. Duran, D. C. Vellom, et al., J. Biol. Chem., 269, 11233–11239 (1994).Google Scholar
  15. 15.
    P. Masson, M.-T. Froment, C. F. Bartels, and O. Lockridge, Biochem. J., 325, 53–61 (1997).PubMedGoogle Scholar
  16. 16.
    P. Masson, P. Legrand, C. F. Barlets, et al., Biochemistry, 36(8), 2266–2277 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902–3909 (1985).CrossRefGoogle Scholar
  18. 18.
    PC Spartan Plus, Version 1.5 Wavefunction Inc., 18401 Von Karman, Suite 370, Irvine, California, 92612, USA (1998).Google Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 98, Revision A.11, Gaussian, Inc., Pittsburgh, PA (2001).Google Scholar
  20. 20.
    R. Asatryan, N. Mailyan, L. Khachatryan and B. Dellinger, Chemosphere, 48(2), 227–236 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    M. S. Aleksanyan, A. A. Karapetyan, Yu. T. Struchkov, et al., Arm. Khim. Zh., 46(1–2), 70–74 (1993).Google Scholar
  22. 22.
    G. Vistoli, A. Pedretti, L. Villa, and B. Testa, J. Am. Chem. Soc., 124, 7472–7480 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Masson, B. N. Goldstein, J.-C. Debouzy, et al., Eur. J. Biochem., 271, 220–234 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Grigoryan
    • 1
  • A. A. Ambartsumyan
    • 1
  • M. V. Mkrtchyan
    • 2
  • V. O. Topuzyan
    • 2
  • G. P. Alebyan
    • 1
  • R. S. Asatryan
    • 3
  1. 1.Institute of BiotechnologyYerevanArmenia
  2. 2.Mndzhoyan Institute of Fine Organic ChemistryNational Academy of Sciences of ArmeniaYerevanArmenia
  3. 3.Yerevan State Medical UniversityYerevanArmenia

Personalised recommendations