Pharmaceutical Chemistry Journal

, Volume 39, Issue 12, pp 663–666 | Cite as

Diffusion transport in interpolyelectrolyte matrix systems based on chitosan and Eudragit L100

  • R. I. Mustafin
  • A. A. Protasova
  • G. Van den Mooter
  • V. A. Kemenova


With a view to the development of new controlled drug delivery systems, the formation of an interpolyelectrolyte complex (IPEC) between chitosan (CTS) and Eudragit L100 (L-100) has been studied. The structure of this IPEC is such that two maxima are observed in the curves of IPEC swelling in the media with different pH values. The release of a model drug (ibuprofen) from IPEC-based tablets is significantly retarded, and this delay can be controlled by changing the molecular weight of CTS in the IPEC composition.


Molecular Weight Organic Chemistry Chitosan Drug Delivery Delivery System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Friend, Adv. Drug Deliv. Rev., 7, 149–199 (1991).CrossRefGoogle Scholar
  2. 2.
    H. Brondsted and J. Kopecek, Pharm. Res., 9, 1540–1545 (1992).CrossRefPubMedGoogle Scholar
  3. 3.
    R. Kinget, W. Kalala, L. Vervoort and G. Van den Mooter, J. Drug Targeting, 6(2), 129–149 (1998).CrossRefGoogle Scholar
  4. 4.
    G. Van den Mooter, C. Samyn, and R. Kinget, Int. J. Pharm., 87, 37–46 (1992).CrossRefGoogle Scholar
  5. 5.
    L. Vervoort, G. Van den Mooter, P. Augustijns and R. Kinget, Int. J. Pharm., 172, 127–135 (1998).CrossRefGoogle Scholar
  6. 6.
    A. Rubinstein, D. Nakar, and A. Sintov, Int. J. Pharm., 84, 141–150 (1992).CrossRefGoogle Scholar
  7. 7.
    M. Ashford, J. Fell, D. Attwood, et al., J. Control. Release, 30, 225–232 (1994).CrossRefGoogle Scholar
  8. 8.
    T. Anthonsen, Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Application, Elsevier, New York (1990).Google Scholar
  9. 9.
    A. M. Dubinskaya and A. E. Dobrotvorskii, Khim.-Farm. Zh., 23(5), 623–625 (1987).Google Scholar
  10. 10.
    M. L. Lorenzo-Lamoza, C. Remuňán-Lopez, J. L. Vila-Jato, and M. J. Alonso, J. Control. Release, 52, 109–118 (1998).CrossRefGoogle Scholar
  11. 11.
    A. B. Zezin and V. B. Rogacheva, in: Advances in the Physics and Chemistry of Polymers [in Russia], Khimiya, Moscow (1973), pp. 3–30.Google Scholar
  12. 12.
    V. A. Kemenova, R. I. Mustafin, K. V. Alekseev, et al., Farmatsiya, No. 1, 67–72 (1991).Google Scholar
  13. 13.
    R. I. Mustafin and I. M. Zakharov, Khim.-Farm. Zh., 38(8), 46–48 (2004).Google Scholar
  14. 14.
    V. A. Kemenova, Author’s Abstract of Doctoral (Ph. D. Chem. Sci.) Thesis [in Russian], Moscow (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. I. Mustafin
    • 1
  • A. A. Protasova
    • 1
  • G. Van den Mooter
    • 2
  • V. A. Kemenova
    • 3
  1. 1.Kazan Medical UniversityKazan, TatarstanRussia
  2. 2.Leuven Catholic UniversityLeuvenBelgium
  3. 3.All-Russia Institute of Medicinal and Aromatic Plants, Scientific Center for Biomedical TechnologiesMoscowRussia

Personalised recommendations